Statistical Methods for Data Mining

Kuangnan Fang

Xiamen University Email: xmfkn@xmu.edu.cn
Linear Model Selection and Regularization

• Recall the linear model

\[Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \epsilon. \]

• In the lectures that follow, we consider some approaches for extending the linear model framework. In the lectures covering Chapter 7 of the text, we generalize the linear model in order to accommodate non-linear, but still additive, relationships.

• In the lectures covering Chapter 8 we consider even more general non-linear models.
In praise of linear models!

• Despite its simplicity, the linear model has distinct advantages in terms of its *interpretability* and often shows good *predictive performance*.

• Hence we discuss in this lecture some ways in which the simple linear model can be improved, by replacing ordinary least squares fitting with some alternative fitting procedures.
Why consider alternatives to least squares?

- **Prediction Accuracy**: especially when $p > n$, to control the variance.
- **Model Interpretability**: By removing irrelevant features — that is, by setting the corresponding coefficient estimates to zero — we can obtain a model that is more easily interpreted. We will present some approaches for automatically performing feature selection.
Three classes of methods

• **Subset Selection.** We identify a subset of the p predictors that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.

• **Shrinkage.** We fit a model involving all p predictors, but the estimated coefficients are shrunken towards zero relative to the least squares estimates. This shrinkage (also known as *regularization*) has the effect of reducing variance and can also perform variable selection.

• **Dimension Reduction.** We project the p predictors into a M-dimensional subspace, where $M < p$. This is achieved by computing M different *linear combinations*, or *projections*, of the variables. Then these M projections are used as predictors to fit a linear regression model by least squares.
Subset Selection

Best subset and stepwise model selection procedures

Best Subset Selection

1. Let \mathcal{M}_0 denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.

2. For $k = 1, 2, \ldots, p$:

 (a) Fit all $P \binom{p}{k}$ models that contain exactly k predictors.

 (b) Pick the best among these $P \binom{p}{k}$ models, and call it \mathcal{M}_k. Here best is defined as having the smallest RSS, or equivalently largest R^2.

3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2.
For each possible model containing a subset of the ten predictors in the Credit data set, the RSS and R^2 are displayed. The red frontier tracks the best model for a given number of predictors, according to RSS and R^2. Though the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one of the variables is categorical and takes on three values, leading to the creation of two dummy variables.
Extensions to other models

- Although we have presented best subset selection here for least squares regression, the same ideas apply to other types of models, such as logistic regression.
- The *deviance*— negative two times the maximized log-likelihood— plays the role of RSS for a broader class of models.
Stepwise Selection

• For computational reasons, best subset selection cannot be applied with very large p. *Why not?*

• Best subset selection may also suffer from statistical problems when p is large: larger the search space, the higher the chance of finding models that look good on the training data, even though they might not have any predictive power on future data.

• Thus an enormous search space can lead to *overfitting* and high variance of the coefficient estimates.

• For both of these reasons, *stepwise* methods, which explore a far more restricted set of models, are attractive alternatives to best subset selection.
Forward Stepwise Selection

- Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model.
- In particular, at each step the variable that gives the greatest *additional* improvement to the fit is added to the model.
In Detail

Forward Stepwise Selection

1. Let \mathcal{M}_0 denote the null model, which contains no predictors.

2. For $k = 0, \ldots, p - 1$:
 2.1 Consider all $p - k$ models that augment the predictors in \mathcal{M}_k with one additional predictor.
 2.2 Choose the best among these $p - k$ models, and call it \mathcal{M}_{k+1}. Here *best* is defined as having smallest RSS or highest R^2.

3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2.
More on Forward Stepwise Selection

• Computational advantage over best subset selection is clear.

• It is not guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors. *Why not? Give an example.*
Credit data example

<table>
<thead>
<tr>
<th># Variables</th>
<th>Best subset</th>
<th>Forward stepwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>rating</td>
<td>rating</td>
</tr>
<tr>
<td>Two</td>
<td>rating, income</td>
<td>rating, income</td>
</tr>
<tr>
<td>Three</td>
<td>rating, income, student</td>
<td>rating, income, student</td>
</tr>
<tr>
<td>Four</td>
<td>cards, income, student, limit</td>
<td>rating, income, student, limit</td>
</tr>
</tbody>
</table>

The first four selected models for best subset selection and forward stepwise selection on the Credit data set. The first three models are identical but the fourth models differ.
Backward Stepwise Selection

- Like forward stepwise selection, *backward stepwise selection* provides an efficient alternative to best subset selection.
- However, unlike forward stepwise selection, it begins with the full least squares model containing all p predictors, and then iteratively removes the least useful predictor, one-at-a-time.
Backward Stepwise Selection: details

Backward Stepwise Selection

1. Let M_p denote the full model, which contains all p predictors.

2. For $k = p, p - 1, \ldots, 1$:

 2.1 Consider all k models that contain all but one of the predictors in M_k, for a total of $k - 1$ predictors.

 2.2 Choose the best among these k models, and call it M_{k-1}. Here best is defined as having smallest RSS or highest R^2.

3. Select a single best model from among M_0, \ldots, M_p using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2.
More on Backward Stepwise Selection

- Like forward stepwise selection, the backward selection approach searches through only $1 + p(p + 1)/2$ models, and so can be applied in settings where p is too large to apply best subset selection.

- Like forward stepwise selection, backward stepwise selection is not guaranteed to yield the best model containing a subset of the p predictors.

- Backward selection requires that the number of samples n is larger than the number of variables p (so that the full model can be fit). In contrast, forward stepwise can be used even when $n < p$, and so is the only viable subset method when p is very large.
Choosing the Optimal Model

- The model containing all of the predictors will always have the smallest RSS and the largest R^2, since these quantities are related to the training error.

- We wish to choose a model with low test error, not a model with low training error. Recall that training error is usually a poor estimate of test error.

- Therefore, RSS and R^2 are not suitable for selecting the best model among a collection of models with different numbers of predictors.
Estimating test error: two approaches

- We can indirectly estimate test error by making an *adjustment* to the training error to account for the bias due to overfitting.
- We can *directly* estimate the test error, using either a validation set approach or a cross-validation approach, as discussed in previous lectures.
- We illustrate both approaches next.
C_p, AIC, BIC, and Adjusted R^2

- These techniques adjust the training error for the model size, and can be used to select among a set of models with different numbers of variables.
- The next figure displays C_p, BIC, and adjusted R^2 for the best model of each size produced by best subset selection on the Credit data set.
Credit data example

- \(C_p \)
- BIC
- Adjusted \(R^2 \)

Number of Predictors

Number of Predictors

Number of Predictors
Now for some details

- **Mallow’s C_p:**
 \[
 C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right),
 \]
 where d is the total number of parameters used and $\hat{\sigma}^2$ is an estimate of the variance of the error ϵ associated with each response measurement.

- The **AIC** criterion is defined for a large class of models fit by maximum likelihood:
 \[
 \text{AIC} = -2 \log L + 2 \cdot d
 \]
 where L is the maximized value of the likelihood function for the estimated model.

- In the case of the linear model with Gaussian errors, maximum likelihood and least squares are the same thing, and C_p and AIC are equivalent. *Prove this.*
Details on BIC

\[\text{BIC} = \frac{1}{n} (\text{RSS} + \log(n)d\hat{\sigma}^2). \]

- Like \(C_p \), the BIC will tend to take on a small value for a model with a low test error, and so generally we select the model that has the lowest BIC value.
- Notice that BIC replaces the \(2d\hat{\sigma}^2 \) used by \(C_p \) with a \(\log(n)d\hat{\sigma}^2 \) term, where \(n \) is the number of observations.
- Since \(\log n > 2 \) for any \(n > 7 \), the BIC statistic generally places a heavier penalty on models with many variables, and hence results in the selection of smaller models than \(C_p \). See Figure on slide 19.
Adjusted R^2

- For a least squares model with d variables, the adjusted R^2 statistic is calculated as

$$\text{Adjusted } R^2 = 1 - \frac{\text{RSS}/(n - d - 1)}{\text{TSS}/(n - 1)}.$$

where TSS is the total sum of squares.

- Unlike C_p, AIC, and BIC, for which a small value indicates a model with a low test error, a large value of adjusted R^2 indicates a model with a small test error.

- Maximizing the adjusted R^2 is equivalent to minimizing $\frac{\text{RSS}}{n-d-1}$. While RSS always decreases as the number of variables in the model increases, $\frac{\text{RSS}}{n-d-1}$ may increase or decrease, due to the presence of d in the denominator.

- Unlike the R^2 statistic, the adjusted R^2 statistic pays a price for the inclusion of unnecessary variables in the model. See Figure on slide 19.
Validation and Cross-Validation

- Each of the procedures returns a sequence of models \mathcal{M}_k indexed by model size $k = 0, 1, 2, \ldots$. Our job here is to select \hat{k}. Once selected, we will return model $\mathcal{M}_{\hat{k}}$.

- We compute the validation set error or the cross-validation error for each model \mathcal{M}_k under consideration, and then select the k for which the resulting estimated test error is smallest.

- This procedure has an advantage relative to AIC, BIC, C_p, and adjusted R^2, in that it provides a direct estimate of the test error, and doesn’t require an estimate of the error variance σ^2.

- It can also be used in a wider range of model selection tasks, even in cases where it is hard to pinpoint the model degrees of freedom (e.g. the number of predictors in the model) or hard to estimate the error variance σ^2.
Validation and Cross-Validation

• Each of the procedures returns a sequence of models M_k indexed by model size $k = 0, 1, 2, \ldots$. Our job here is to select \hat{k}. Once selected, we will return model $M_{\hat{k}}$.

• We compute the validation set error or the cross-validation error for each model M_k under consideration, and then select the k for which the resulting estimated test error is smallest.

• This procedure has an advantage relative to AIC, BIC, C_p, and adjusted R^2, in that it provides a direct estimate of the test error, and doesn’t require an estimate of the error variance σ^2.

• It can also be used in a wider range of model selection tasks, even in cases where it is hard to pinpoint the model degrees of freedom (e.g. the number of predictors in the model) or hard to estimate the error variance σ^2.
Credit data example

![Graphs showing Square Root of BIC, Validation Set Error, and Cross-Validation Error vs. Number of Predictors.](image-url)
Details of Previous Figure

• The validation errors were calculated by randomly selecting three-quarters of the observations as the training set, and the remainder as the validation set.

• The cross-validation errors were computed using \(k = 10 \) folds. In this case, the validation and cross-validation methods both result in a six-variable model.

• However, all three approaches suggest that the four-, five-, and six-variable models are roughly equivalent in terms of their test errors.

• In this setting, we can select a model using the one-standard-error rule. We first calculate the standard error of the estimated test MSE for each model size, and then select the smallest model for which the estimated test error is within one standard error of the lowest point on the curve. What is the rationale for this?
Shrinkage Methods

Ridge regression and Lasso

- The subset selection methods use least squares to fit a linear model that contains a subset of the predictors.
- As an alternative, we can fit a model containing all p predictors using a technique that constrains or regularizes the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero.
- It may not be immediately obvious why such a constraint should improve the fit, but it turns out that shrinking the coefficient estimates can significantly reduce their variance.
Ridge regression

• Recall that the least squares fitting procedure estimates $\beta_0, \beta_1, \ldots, \beta_p$ using the values that minimize

$$\text{RSS} = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2.$$

• In contrast, the ridge regression coefficient estimates $\hat{\beta}^R$ are the values that minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = \text{RSS} + \lambda \sum_{j=1}^{p} \beta_j^2,$$

where $\lambda \geq 0$ is a tuning parameter, to be determined separately.
Ridge regression

- Writing the criterion in matrix form

\[RSS(\lambda) = (y - X \beta)^T (y - X \beta) + \lambda \beta^T \beta \]

- The ridge regression solutions are easily seen to be

\[\beta^{ridge} = (X^T X + \lambda I)^{-1} X^T y \]

where \(I \) is the \(p \times p \) identity matrix.
Ridge regression: continued

- As with least squares, ridge regression seeks coefficient estimates that fit the data well, by making the RSS small.
- However, the second term, $\lambda \sum_j \beta_j^2$, called a *shrinkage penalty*, is small when β_1, \ldots, β_p are close to zero, and so it has the effect of *shrinking* the estimates of β_j towards zero.
- The tuning parameter λ serves to control the relative impact of these two terms on the regression coefficient estimates.
- Selecting a good value for λ is critical; cross-validation is used for this.
Credit data example
Details of Previous Figure

- In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate for one of the ten variables, plotted as a function of λ.
- The right-hand panel displays the same ridge coefficient estimates as the left-hand panel, but instead of displaying λ on the x-axis, we now display $\|\hat{\beta}^R_\lambda\|_2/\|\hat{\beta}\|_2$, where $\hat{\beta}$ denotes the vector of least squares coefficient estimates.
- The notation $\|\beta\|_2$ denotes the ℓ_2 norm (pronounced “ell 2”) of a vector, and is defined as $\|\beta\|_2 = \sqrt{\sum_{j=1}^{p} \beta_j^2}$.
Ridge regression: scaling of predictors

- The standard least squares coefficient estimates are *scale equivariant*: multiplying X_j by a constant c simply leads to a scaling of the least squares coefficient estimates by a factor of $1/c$. In other words, regardless of how the jth predictor is scaled, $X_j \hat{\beta}_j$ will remain the same.

- In contrast, the ridge regression coefficient estimates can change *substantially* when multiplying a given predictor by a constant, due to the sum of squared coefficients term in the penalty part of the ridge regression objective function.

- Therefore, it is best to apply ridge regression after *standardizing the predictors*, using the formula

$$
\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2}}
$$
Why Does Ridge Regression Improve Over Least Squares?

The Bias-Variance tradeoff

Simulated data with $n = 50$ observations, $p = 45$ predictors, all having nonzero coefficients. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}_R^L\|_2/\|\hat{\beta}\|_2$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.
The Lasso

• Ridge regression does have one obvious disadvantage: unlike subset selection, which will generally select models that involve just a subset of the variables, ridge regression will include all p predictors in the final model.

• The **Lasso** is a relatively recent alternative to ridge regression that overcomes this disadvantage. The lasso coefficients, $\hat{\beta}_L^\lambda$, minimize the quantity

\[
\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = \text{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|.
\]

• In statistical parlance, the lasso uses an ℓ_1 (pronounced “ell 1”) penalty instead of an ℓ_2 penalty. The ℓ_1 norm of a coefficient vector β is given by $\|\beta\|_1 = \sum |\beta_j|$.
The Lasso: continued

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero.
- However, in the case of the lasso, the ℓ_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large.
- Hence, much like best subset selection, the lasso performs variable selection.
- We say that the lasso yields sparse models — that is, models that involve only a subset of the variables.
- As in ridge regression, selecting a good value of λ for the lasso is critical; cross-validation is again the method of choice.
Example: Credit dataset

Standardized Coefficients

\[k \hat{L} k^{-1} \hat{\beta} \]

\[\| \hat{\beta}_X \|_1 / \| \hat{\beta} \|_1 \]
The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero?
The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero?

One can show that the lasso and ridge regression coefficient estimates solve the problems

\[
\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \leq s
\]

and

\[
\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \quad \text{subject to} \quad \sum_{j=1}^{p} \beta_j^2 \leq s,
\]

respectively.
The Lasso Picture
shrinkage methods

TABLE 3.4. Estimators of β_j in the case of orthonormal columns of X. M and λ are constants chosen by the corresponding techniques; sign denotes the sign of its argument (± 1), and x_+ denotes “positive part” of x. Below the table, estimators are shown by broken red lines. The 45° line in gray shows the unrestricted estimate for reference.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best subset (size M)</td>
<td>$\hat{\beta}_j \cdot I(</td>
</tr>
<tr>
<td>Ridge</td>
<td>$\hat{\beta}_j / (1 + \lambda)$</td>
</tr>
<tr>
<td>Lasso</td>
<td>$\text{sign}(\hat{\beta}_j)(</td>
</tr>
</tbody>
</table>

![Graphs of Best Subset, Ridge, and Lasso](image)
Algorithm 1 Coordinate descent minimization

1: Let $\beta^{[0]} \in \mathbb{R}^p$ be an initial parameter vector. Set $m = 0$.
2: repeat
3: Increase m by one: $m \leftarrow m + 1$.
 Denote by $\mathcal{S}^{[m]}$ the index cycling through the coordinates \{1, \ldots, p\}:
 $\mathcal{S}^{[m]} = \mathcal{S}^{[m-1]} + 1 \mod p$. Abbreviate by $j = \mathcal{S}^{[m]}$ the value of $\mathcal{S}^{[m]}$.
4: if $|G_j(\beta^{[m-1]}_{-j})| \leq \lambda$: set $\beta^{[m]}_j = 0$,
 otherwise: $\beta^{[m]}_j = \arg \min_{\beta_j} Q_\lambda(\beta^{[m-1]}_{+j})$,
 where $\beta^{[m-1]}_{-j}$ is the parameter vector where the jth component is set to zero and $\beta^{[m-1]}_{+j}$ is
 the parameter vector which equals $\beta^{[m-1]}$ except for the jth component where it is equal to β_j (i.e. the argument we minimize over).
5: until numerical convergence
Coordinate descent algorithm for Lasso

The coordinatewise optimization above can easily incorporate the more general case where some parameters are unpenalized, i.e.,

$$
\hat{\beta} = \arg\min_{\beta} Q_{\lambda}(\beta),
$$

$$
Q_{\lambda}(\beta) = \frac{\|Y - X\beta\|_2^2}{n} + \lambda \sum_{j=r+1}^{p} |\beta_j|,
$$

and thus, β_1, \ldots, β_r are unpenalized. The up-dating step in the optimization algorithm then looks as follows:

if $j \in \{1, \ldots, r\}$: $\beta_j^{[m]} = \arg\min_{\beta_j} Q_{\lambda}(\beta_{-j}^{[m-1]})$,

if $j \in \{r+1, \ldots, p\}$:

 if $|G_j(\beta_{-j}^{[m-1]})| \leq \lambda$: set $\beta_j^{[m]} = 0$,

 otherwise: $\beta_j^{[m]} = \arg\min_{\beta_j} Q_{\lambda}(\beta_{+j}^{[m-1]})$.
Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso on simulated data set of Slide 32. **Right**: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dashed). Both are plotted against their R^2 on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.
Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso. The simulated data is similar to that in Slide 38, except that now only two predictors are related to the response. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dashed). Both are plotted against their R^2 on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.
Conclusions

- These two examples illustrate that neither ridge regression nor the lasso will universally dominate the other.
- In general, one might expect the lasso to perform better when the response is a function of only a relatively small number of predictors.
- However, the number of predictors that is related to the response is never known \textit{a priori} for real data sets.
- A technique such as cross-validation can be used in order to determine which approach is better on a particular data set.
Adaptive Lasso

\[P[\hat{S} \supseteq S_0] \to 1 \quad (p \geq n \to \infty) \]

where \(\hat{S} = \{ j; \hat{\beta}_j \neq 0, \ j = 1, \ldots, p \} \) and \(S_0 = \{ j; \beta_j^0 \neq 0, \ j = 1, \ldots, p \} \)

\[\hat{\beta}_{\text{adapt}}(\lambda) = \arg \min_\beta \left(\frac{1}{2n} \| Y - X\beta \|_2^2 + \lambda \sum_{j=1}^p \frac{|\beta_j|}{|\hat{\beta}_{\text{init},j}|} \right), \]

where \(\hat{\beta}_{\text{init}} \) is an initial estimator.

The adaptive Lasso has the following obvious property:

\[\hat{\beta}_{\text{init},j} = 0 \Rightarrow \hat{\beta}_{\text{adapt},j} = 0. \]
Adaptive Lasso

Fig. 2.4 Estimated regression coefficients in the linear model with $p = 1000$ and $n = 50$. Left: Lasso. Right: Adaptive Lasso with Lasso as initial estimator. The 3 true regression coefficients are indicated with triangles. Both methods used with tuning parameters selected from 10-fold cross-validation.
Generalization of shrinkage methods

- We can generalize ridge regression and the lasso. Consider the criterion

\[\tilde{\beta} = \text{argmin}_\beta \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\} \]

- $q > 1$, $|\beta_j|^q$ is differentiable at 0, and so does not share the ability of lasso.

FIGURE 3.12. Contours of constant value of $\sum_j |\beta_j|^q$ for given values of q.
Generalization of shrinkage methods

- Zou and Hastie (2005) introduced the elastic-net penalty

\[\lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1 - \alpha) |\beta_j|) \]

a different compromise between ridge and lasso.

FIGURE 3.13. Contours of constant value of \(\sum_j |\beta_j|^q \) for \(q = 1.2 \) (left plot), and the elastic-net penalty \(\sum_j (\alpha \beta_j^2 + (1 - \alpha) |\beta_j|) \) for \(\alpha = 0.2 \) (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the \(q = 1.2 \) penalty does not.
MCP

- Zhang (2010) propose MCP penalty

\[P(|\beta|; \lambda, a) = \begin{cases}
\lambda |\beta| - \frac{|\beta|^2}{2a}, & \text{if } |\beta| \leq a\lambda \\
a\lambda^2, & \text{if } |\beta| > a\lambda
\end{cases} \]

\[P_{\lambda,a}' (|\beta|; \lambda, a) = \begin{cases}
\lambda - \frac{|\beta|}{a}, & \text{if } |\beta| \leq a\lambda \\
0, & \text{if } |\beta| > a\lambda
\end{cases} \]
Fan and Li (2001) propose SCAD penalty

\[P(|\beta|; \lambda, a) = \begin{cases}
\lambda |\beta| & \text{if } 0 \leq |\beta| < \lambda \\
-\frac{\beta^2 - 2a\lambda|\beta| + \lambda^2}{2(a-1)} & \text{if } \lambda \leq |\beta| < a\lambda \\
(a+1)\lambda^2 / 2 & \text{otherwise}
\end{cases} \]
Group LASSO

- Yuan and Lin (2006) propose group LASSO penalty

For a column vector $\mathbf{v} \in \mathbb{R}^d$ with $d \geq 1$ and a positive definite matrix R, denote $\|\mathbf{v}\|_2 = (\mathbf{v}'\mathbf{v})^{1/2}$ and $\|\mathbf{v}\|_R = (\mathbf{v}'R\mathbf{v})^{1/2}$. Let $\mathbf{\beta} = (\mathbf{\beta}_1', \ldots, \mathbf{\beta}_J')'$, where $\mathbf{\beta}_j \in \mathbb{R}^{d_j}$. The group LASSO solution $\hat{\mathbf{\beta}}(\lambda)$ is defined as a minimizer of

\[
\frac{1}{2n} \left\| \mathbf{y} - \sum_{j=1}^{J} X_j' \mathbf{\beta}_j \right\|_2^2 + \lambda \sum_{j=1}^{J} c_j \|\mathbf{\beta}_j\|_{R_j},
\]

where $\lambda \geq 0$ is the penalty parameter and R_j’s are $d_j \times d_j$ positive definite matrices. Here the c_j’s in the penalty are used to adjust for the group sizes. A reasonable choice is $c_j = \sqrt{d_j}$. Because (2.1) is convex, any local minimizer of (2.1) is also a global minimizer and is characterized by the Karush–Kuhn–Tucker conditions as given in Yuan and Lin (2006).
Composite MCP

- Composite MCP

\[P_{out} \left(\sum_{k=1}^{p_j} P_{in} \left(|\beta_k^{(j)}| \right) \right) \]

- Composite MCP for logistic regression

\[
\min \left\{ -l(\beta_0, \beta)/n + \sum_{j=1}^{J} \sum_{k=1}^{p_j} P_{MCP} \left(\sum_{k=1}^{p_j} P_{MCP} \left(|\beta_k^{(j)}| ; \lambda, b \right); \lambda, b \right) \right\}
\]
Fang, Wang and Ma (2015) propose adaptive sparse group lasso

\[
\min \left\{ \frac{1}{2} \| y - \sum_{j=1}^{J} X_j \beta^{(j)} \|^2 + \lambda (1 - \alpha) \sum_{j=1}^{J} w_j \| \beta^{(j)} \|^2 + \lambda \alpha \sum_{j=1}^{J} \xi^{(j)T} | \beta^{(j)} | \right\}
\]

where \(W = (w_1, \cdots, w_J)^T \in R_+^J \) is the group weight vector, \(\xi^T = (\xi^{(1)T}, \cdots, \xi^{(J)T}) = (\xi^{(1)}, \cdots, \xi^{(1)}, \cdots, \xi^{(J)}, \cdots, \xi^{(J)}) \in R_+^p \) denote the individual weights, and \(\lambda \in R_+ \) is the tuning parameter. For different groups, the penalty level can be different. By adopting lower penalty for large coefficients while higher penalty for small ones, we expect this to be able to improve variable selection accuracy and reduce estimation bias.
We use the group bridge estimator to construct these two type of weights

\[w_j = \left(\| \hat{\beta}^{(j)} (GB) \|_1 + \frac{1}{n} \right)^{-1} \]

\[\xi_i^{(j)} = \left(| \hat{\beta}_i^{(j)} (GB) | + \frac{1}{n} \right)^{-1} \]
<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>nvars</th>
<th>ngroups</th>
<th>Cgroups</th>
<th>FNR</th>
<th>FDR</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>true model</td>
<td>100</td>
<td>10.00</td>
<td>2.00</td>
<td>100.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GL</td>
<td>100</td>
<td>20.29</td>
<td>4.05</td>
<td>79.42</td>
<td>0.00</td>
<td>0.26</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>19.28</td>
<td>3.85</td>
<td>81.44</td>
<td>0.00</td>
<td>0.23</td>
<td>0.39</td>
</tr>
<tr>
<td>Example 1</td>
<td>100</td>
<td>10.18</td>
<td>2.21</td>
<td>97.9</td>
<td>0.00</td>
<td>0.01</td>
<td>1.77</td>
</tr>
<tr>
<td>SGL</td>
<td>200</td>
<td>10.20</td>
<td>2.14</td>
<td>98.62</td>
<td>0.00</td>
<td>0.01</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>11.38</td>
<td>2.18</td>
<td>89.8</td>
<td>0.00</td>
<td>0.05</td>
<td>0.57</td>
</tr>
<tr>
<td>adSGL</td>
<td>200</td>
<td>11.2</td>
<td>2.27</td>
<td>92.86</td>
<td>0.00</td>
<td>0.03</td>
<td>0.27</td>
</tr>
<tr>
<td>true model</td>
<td>210</td>
<td>21.00</td>
<td>4.00</td>
<td>100.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GL</td>
<td>100</td>
<td>37.99</td>
<td>5.33</td>
<td>77.77</td>
<td>0.00</td>
<td>0.81</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>37.31</td>
<td>5.24</td>
<td>79.40</td>
<td>0.00</td>
<td>0.78</td>
<td>0.89</td>
</tr>
<tr>
<td>Example 2</td>
<td>100</td>
<td>24.07</td>
<td>5.42</td>
<td>76.17</td>
<td>0.07</td>
<td>0.22</td>
<td>4.3</td>
</tr>
<tr>
<td>SGL</td>
<td>200</td>
<td>23.88</td>
<td>5.09</td>
<td>81.8</td>
<td>0.01</td>
<td>0.14</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>25.76</td>
<td>4.34</td>
<td>94.3</td>
<td>0.00</td>
<td>0.23</td>
<td>1.2</td>
</tr>
<tr>
<td>adSGL</td>
<td>200</td>
<td>24.81</td>
<td>4.1</td>
<td>98.4</td>
<td>0.00</td>
<td>0.18</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Table 1. Simulation results of Example 1. 500 replicates for each example.
As for subset selection, for ridge regression and lasso we require a method to determine which of the models under consideration is best.

That is, we require a method selecting a value for the tuning parameter λ or equivalently, the value of the constraint s.

Cross-validation provides a simple way to tackle this problem. We choose a grid of λ values, and compute the cross-validation error rate for each value of λ.

We then select the tuning parameter value for which the cross-validation error is smallest.

Finally, the model is re-fit using all of the available observations and the selected value of the tuning parameter.
Credit data example

Left: Cross-validation errors that result from applying ridge regression to the Credit data set with various values of λ.

Right: The coefficient estimates as a function of λ. The vertical dashed lines indicates the value of λ selected by cross-validation.
Simulated data example

Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated data set from Slide 39. **Right:** The corresponding lasso coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit for which the cross-validation error is smallest.
Dimension Reduction Methods

- The methods that we have discussed so far in this chapter have involved fitting linear regression models, via least squares or a shrunken approach, using the original predictors, X_1, X_2, \ldots, X_p.
- We now explore a class of approaches that transform the predictors and then fit a least squares model using the transformed variables. We will refer to these techniques as dimension reduction methods.
Dimension Reduction Methods: details

• Let Z_1, Z_2, \ldots, Z_M represent $M < p$ linear combinations of our original p predictors. That is,

$$Z_m = \sum_{j=1}^{p} \phi_{mj}X_j$$ \hspace{1cm} (1)$$

for some constants $\phi_{m1}, \ldots, \phi_{mp}$.

• We can then fit the linear regression model,

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i, \hspace{0.5cm} i = 1, \ldots, n, \hspace{1cm} (2)$$

using ordinary least squares.

• Note that in model (2), the regression coefficients are given by $\theta_0, \theta_1, \ldots, \theta_M$. If the constants $\phi_{m1}, \ldots, \phi_{mp}$ are chosen wisely, then such dimension reduction approaches can often outperform OLS regression.
• Notice that from definition (1),

\[
\sum_{m=1}^{M} \theta_m \phi_{mj} x_{ij} = \sum_{j=1}^{p} \beta_j x_{ij},
\]

where

\[
\beta_j = \sum_{m=1}^{M} \theta_m \phi_{mj}. \quad (3)
\]

• Hence model (2) can be thought of as a special case of the original linear regression model.

• Dimension reduction serves to constrain the estimated \(\beta_j \) coefficients, since now they must take the form (3).

• Can win in the bias-variance tradeoff.
• Here we apply principal components analysis (PCA) (discussed in Chapter 10 of the text) to define the linear combinations of the predictors, for use in our regression.

• The first principal component is that (normalized) linear combination of the variables with the largest variance.

• The second principal component has largest variance, subject to being uncorrelated with the first.

• And so on.

• Hence with many correlated original variables, we replace them with a small set of principal components that capture their joint variation.
Principal Components Analysis

• PCA produces a low-dimensional representation of a dataset. It finds a sequence of linear combinations of the variables that have maximal variance, and are mutually uncorrelated.

• Apart from producing derived variables for use in supervised learning problems, PCA also serves as a tool for data visualization.

研究p个变量关系，做两两散点图，需要做P取2个图，此外两两散点图包含的信息很少，不能很好反应数据之间的关系！
需要一种低维的表示方法，但又包含了数据足够多的信息
Principal Components Analysis: details

• The *first principal component* of a set of features \(X_1, X_2, \ldots, X_p\) is the normalized linear combination of the features

\[
Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \ldots + \phi_{p1}X_p
\]

that has the largest variance. By *normalized*, we mean that \(\sum_{j=1}^{p} \phi_{j1}^2 = 1\).

• We refer to the elements \(\phi_{11}, \ldots, \phi_{p1}\) as the loadings of the first principal component; together, the loadings make up the principal component loading vector,
\(\phi_1 = (\phi_{11} \ \phi_{21} \ \ldots \ \phi_{p1})^T\).

• We constrain the loadings so that their sum of squares is equal to one, since otherwise setting these elements to be arbitrarily large in absolute value could result in an arbitrarily large variance.
The population size (\textit{pop}) and ad spending (\textit{ad}) for 100 different cities are shown as purple circles. The green solid line indicates the first principal component direction, and the blue dashed line indicates the second principal component direction.
Plots of the first principal component scores z_{i1} versus pop and ad. The relationships are strong.
Plots of the second principal component scores z_{i2} versus pop and ad. The relationships are weak.
Computation of Principal Components

• Suppose we have a $n \times p$ data set X. Since we are only interested in variance, we assume that each of the variables in X has been centered to have mean zero (that is, the column means of X are zero).

• We then look for the linear combination of the sample feature values of the form

$$z_{i1} = \phi_{11} x_{i1} + \phi_{21} x_{i2} + \ldots + \phi_{p1} x_{ip}$$

for $i = 1, \ldots, n$ that has largest sample variance, subject to the constraint that $\sum_{j=1}^{p} \phi_{j1}^2 = 1$.

• Since each of the x_{ij} has mean zero, then so does z_{i1} (for any values of ϕ_{j1}). Hence the sample variance of the z_{i1} can be written as $\frac{1}{n} \sum_{i=1}^{n} z_{i1}^2$.
• Plugging in (1) the first principal component loading vector solves the optimization problem

$$\text{maximize } \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^2 \text{ subject to } \sum_{j=1}^{p} \phi^2_{j1} = 1.$$

• This problem can be solved via a singular-value decomposition of the matrix \mathbf{X}, a standard technique in linear algebra.

• We refer to Z_1 as the first principal component, with realized values z_{11}, \ldots, z_{n1}.
The loading vector ϕ_1 with elements $\phi_{11}, \phi_{21}, \ldots, \phi_{p1}$ defines a direction in feature space along which the data vary the most.

If we project the n data points x_1, \ldots, x_n onto this direction, the projected values are the principal component scores z_{11}, \ldots, z_{n1} themselves.
Further principal components

- The second principal component is the linear combination of X_1, \ldots, X_p that has maximal variance among all linear combinations that are uncorrelated with Z_1.
- The second principal component scores $z_{12}, z_{22}, \ldots, z_{n2}$ take the form

$$z_{i2} = \phi_{12}x_{i1} + \phi_{22}x_{i2} + \ldots + \phi_{p2}x_{ip},$$

where ϕ_2 is the second principal component loading vector, with elements $\phi_{12}, \phi_{22}, \ldots, \phi_{p2}$.
Further principal components: continued

- It turns out that constraining Z_2 to be uncorrelated with Z_1 is equivalent to constraining the direction ϕ_2 to be orthogonal (perpendicular) to the direction ϕ_1. And so on.
- The principal component directions $\phi_1, \phi_2, \phi_3, \ldots$ are the ordered sequence of right singular vectors of the matrix X, and the variances of the components are $\frac{1}{n}$ times the squares of the singular values. There are at most $\min(n - 1, p)$ principal components.
Illustration

- **USAarrests** data: For each of the fifty states in the United States, the data set contains the number of arrests per 100,000 residents for each of three crimes: Assault, Murder, and Rape. We also record UrbanPop (the percent of the population in each state living in urban areas).

- The principal component score vectors have length $n = 50$, and the principal component loading vectors have length $p = 4$.

- PCA was performed after standardizing each variable to have mean zero and standard deviation one.
The first two principal components for the USArrests data.

- The blue state names represent the scores for the first two principal components.

- The orange arrows indicate the first two principal component loading vectors (with axes on the top and right). For example, the loading for Rape on the first component is 0.54, and its loading on the second principal component 0.17 [the word Rape is centered at the point (0.54, 0.17)].

- This figure is known as a *biplot*, because it displays both the principal component scores and the principal component loadings.
PCA loadings

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murder</td>
<td>0.5358995</td>
<td>-0.4181809</td>
</tr>
<tr>
<td>Assault</td>
<td>0.5831836</td>
<td>-0.1879856</td>
</tr>
<tr>
<td>UrbanPop</td>
<td>0.2781909</td>
<td>0.8728062</td>
</tr>
<tr>
<td>Rape</td>
<td>0.5434321</td>
<td>0.1673186</td>
</tr>
</tbody>
</table>
Pictures of PCA: continued

Another Interpretation of PCA

A subset of the advertising data. **Left:** The first principal component, chosen to minimize the sum of the squared perpendicular distances to each point, is shown in green. These distances are represented using the black dashed line segments. **Right:** The left-hand panel has been rotated so that the first principal component lies on the x-axis.
Another Interpretation of Principal Components
PCA find the hyperplane closest to the observations

- The first principal component loading vector has a very special property: it defines the line in p-dimensional space that is closest to the n observations (using average squared Euclidean distance as a measure of closeness).
- The notion of principal components as the dimensions that are closest to the n observations extends beyond just the first principal component.
- For instance, the first two principal components of a data set span the plane that is closest to the n observations, in terms of average squared Euclidean distance.
Scaling of the variables matters

- If the variables are in different units, scaling each to have standard deviation equal to one is recommended.
- If they are in the same units, you might or might not scale the variables.
Proportion Variance Explained

- To understand the strength of each component, we are interested in knowing the proportion of variance explained (PVE) by each one.
- The *total variance* present in a data set (assuming that the variables have been centered to have mean zero) is defined as

\[
\sum_{j=1}^{p} \text{Var}(X_j) = \sum_{j=1}^{p} \frac{1}{n} \sum_{i=1}^{n} x_{ij}^2,
\]

and the variance explained by the *m*th principal component is

\[
\text{Var}(Z_m) = \frac{1}{n} \sum_{i=1}^{n} z_{im}^2.
\]

- It can be shown that \(\sum_{j=1}^{p} \text{Var}(X_j) = \sum_{m=1}^{M} \text{Var}(Z_m) \), with \(M = \min(n - 1, p) \).
Therefore, the PVE of the mth principal component is given by the positive quantity between 0 and 1

$$\frac{\sum_{i=1}^{n} z_{im}^2}{\sum_{j=1}^{p} \sum_{i=1}^{n} x_{ij}^2}.$$

The PVEs sum to one. We sometimes display the cumulative PVEs.
How many principal components should we use?

If we use principal components as a summary of our data, how many components are sufficient?

• No simple answer to this question, as cross-validation is not available for this purpose.
 • *Why not?*
How many principal components should we use?

If we use principal components as a summary of our data, how many components are sufficient?

- No simple answer to this question, as cross-validation is not available for this purpose.
 - \textit{Why not?}
 - When could we use cross-validation to select the number of components?
How many principal components should we use?

If we use principal components as a summary of our data, how many components are sufficient?

- No simple answer to this question, as cross-validation is not available for this purpose.
 - *Why not?*
 - When could we use cross-validation to select the number of components?
- the “scree plot” on the previous slide can be used as a guide: we look for an “elbow”.
PCR was applied to two simulated data sets. The black, green, and purple lines correspond to squared bias, variance, and test mean squared error, respectively. **Left:** Simulated data from slide 32. **Right:** Simulated data from slide 39.
Principal Component Regression

In each panel, the irreducible error $\text{Var}(\cdot)$ is shown as a horizontal dashed line. Left: Results for PCR. Right: Results for lasso (solid) and ridge regression (dotted). The x-axis displays the shrinkage factor of the coefficient estimates, defined as the ℓ_2 norm of the shrunken coefficient estimates divided by the ℓ_2 norm of the least squares estimate.
Choosing the number of directions M

Left: PCR standardized coefficient estimates on the Credit data set for different values of M. Right: The 10-fold cross validation MSE obtained using PCR, as a function of M.

M最优是10，基本无降维效果
Partial Least Squares

- PCR identifies linear combinations, or *directions*, that best represent the predictors X_1, \ldots, X_p.
- These directions are identified in an *unsupervised* way, since the response Y is not used to help determine the principal component directions.
- That is, the response does not *supervise* the identification of the principal components.
- Consequently, PCR suffers from a potentially serious drawback: there is no guarantee that the directions that best explain the predictors will also be the best directions to use for predicting the response.
Partial Least Squares: continued

- Like PCR, PLS is a dimension reduction method, which first identifies a new set of features Z_1, \ldots, Z_M that are linear combinations of the original features, and then fits a linear model via OLS using these M new features.

- But unlike PCR, PLS identifies these new features in a supervised way – that is, it makes use of the response Y in order to identify new features that not only approximate the old features well, but also that *are related to the response*.

- Roughly speaking, the PLS approach attempts to find directions that help explain both the response and the predictors.
Details of Partial Least Squares

- After standardizing the p predictors, PLS computes the first direction Z_1 by setting each ϕ_{1j} in (1) equal to the coefficient from the simple linear regression of Y onto X_j.
- One can show that this coefficient is proportional to the correlation between Y and X_j.
- Hence, in computing $Z_1 = \sum_{j=1}^{p} \phi_{1j} X_j$, PLS places the highest weight on the variables that are most strongly related to the response.
- Subsequent directions are found by taking residuals and then repeating the above prescription.
Summary

- Model selection methods are an essential tool for data analysis, especially for big datasets involving many predictors.
- Research into methods that give sparsity, such as the lasso, is an especially hot area.
- Later, we will return to sparsity in more detail, and will describe related approaches such as the elastic net.