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Cross-validation and the Bootstrap

• In the section we discuss two resampling methods:
cross-validation and the bootstrap.

• These methods refit a model of interest to samples formed
from the training set, in order to obtain additional
information about the fitted model.

• For example, they provide estimates of test-set prediction
error, and the standard deviation and bias of our
parameter estimates

1 / 44



Cross-validation and the Bootstrap

• In the section we discuss two resampling methods:
cross-validation and the bootstrap.

• These methods refit a model of interest to samples formed
from the training set, in order to obtain additional
information about the fitted model.

• For example, they provide estimates of test-set prediction
error, and the standard deviation and bias of our
parameter estimates

1 / 44



Cross-validation and the Bootstrap

• In the section we discuss two resampling methods:
cross-validation and the bootstrap.

• These methods refit a model of interest to samples formed
from the training set, in order to obtain additional
information about the fitted model.

• For example, they provide estimates of test-set prediction
error, and the standard deviation and bias of our
parameter estimates

1 / 44



Training Error versus Test error

• Recall the distinction between the test error and the
training error:

• The test error is the average error that results from using a
statistical learning method to predict the response on a new
observation, one that was not used in training the method.

• In contrast, the training error can be easily calculated by
applying the statistical learning method to the observations
used in its training.

• But the training error rate often is quite di↵erent from the
test error rate, and in particular the former can
dramatically underestimate the latter.
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Assessing Model Accuracy

Suppose we fit a model f̂(x) to some training data
Tr = {xi, yi}N1 , and we wish to see how well it performs.

• We could compute the average squared prediction error
over Tr:

MSETr = Avei2Tr[yi � f̂(xi)]
2

This may be biased toward more overfit models.

• Instead we should, if possible, compute it using fresh test
data Te = {xi, yi}M1 :

MSETe = Avei2Te[yi � f̂(xi)]
2
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Training- versus Test-Set Performance
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2.2 Assessing Model Accuracy 31
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FIGURE 2.9. Left: Data simulated from f , shown in black. Three estimates of
f are shown: the linear regression line (orange curve), and two smoothing spline
fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red
curve), and minimum possible test MSE over all methods (dashed line). Squares
represent the training and test MSEs for the three fits shown in the left-hand
panel.

statistical methods specifically estimate coe�cients so as to minimize the
training set MSE. For these methods, the training set MSE can be quite
small, but the test MSE is often much larger.
Figure 2.9 illustrates this phenomenon on a simple example. In the left-

hand panel of Figure 2.9, we have generated observations from (2.1) with
the true f given by the black curve. The orange, blue and green curves illus-
trate three possible estimates for f obtained using methods with increasing
levels of flexibility. The orange line is the linear regression fit, which is rela-
tively inflexible. The blue and green curves were produced using smoothing
splines, discussed in Chapter 7, with di↵erent levels of smoothness. It is

smoothing spline
clear that as the level of flexibility increases, the curves fit the observed
data more closely. The green curve is the most flexible and matches the
data very well; however, we observe that it fits the true f (shown in black)
poorly because it is too wiggly. By adjusting the level of flexibility of the
smoothing spline fit, we can produce many di↵erent fits to this data.
We now move on to the right-hand panel of Figure 2.9. The grey curve

displays the average training MSE as a function of flexibility, or more for-
mally the degrees of freedom, for a number of smoothing splines. The de-

degrees of freedom
grees of freedom is a quantity that summarizes the flexibility of a curve; it
is discussed more fully in Chapter 7. The orange, blue and green squares

Black curve is truth. Red curve on right is MSETe, grey curve is

MSETr. Orange, blue and green curves/squares correspond to fits of

di↵erent flexibility.

18 / 30



2.2 Assessing Model Accuracy 33

0 20 40 60 80 100

2
4

6
8

10
12

X

Y

2 5 10 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Flexibility
M

ea
n 

Sq
ua

re
d 

Er
ro

r

FIGURE 2.10. Details are as in Figure 2.9, using a di↵erent true f that is
much closer to linear. In this setting, linear regression provides a very good fit to
the data.
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FIGURE 2.11. Details are as in Figure 2.9, using a di↵erent f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

Here the truth is smoother, so the smoother fit and linear model do

really well.
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FIGURE 2.11. Details are as in Figure 2.9, using a di↵erent f that is far from
linear. In this setting, linear regression provides a very poor fit to the data.

Here the truth is wiggly and the noise is low, so the more flexible fits

do the best.
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Bias-Variance Trade-o↵

Suppose we have fit a model f̂(x) to some training data Tr, and
let (x0, y0) be a test observation drawn from the population. If
the true model is Y = f(X) + ✏ (with f(x) = E(Y |X = x)),
then

E

⇣
y0 � f̂(x0)

⌘2
= Var(f̂(x0)) + [Bias(f̂(x0))]

2 +Var(✏).

The expectation averages over the variability of y0 as well as
the variability in Tr. Note that Bias(f̂(x0))] = E[f̂(x0)]� f(x0).

Typically as the flexibility of f̂ increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-o↵.
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Bias-variance trade-o↵ for the three examples

36 2. Statistical Learning
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FIGURE 2.12. Squared bias (blue curve), variance (orange curve), Var(✏)
(dashed line), and test MSE (red curve) for the three data sets in Figures 2.9–2.11.
The vertical dashed line indicates the flexibility level corresponding to the smallest
test MSE.

ibility increases, and the test MSE only declines slightly before increasing
rapidly as the variance increases. Finally, in the right-hand panel of Fig-
ure 2.12, as flexibility increases, there is a dramatic decline in bias because
the true f is very non-linear. There is also very little increase in variance
as flexibility increases. Consequently, the test MSE declines substantially
before experiencing a small increase as model flexibility increases.
The relationship between bias, variance, and test set MSE given in Equa-

tion 2.7 and displayed in Figure 2.12 is referred to as the bias-variance
trade-o↵. Good test set performance of a statistical learning method re-

bias-variance
trade-o↵quires low variance as well as low squared bias. This is referred to as a

trade-o because it is easy to obtain a method with extremely low bias but
high variance (for instance, by drawing a curve that passes through every
single training observation) or a method with very low variance but high
bias (by fitting a horizontal line to the data). The challenge lies in finding
a method for which both the variance and the squared bias are low. This
trade-o is one of the most important recurring themes in this book.
In a real-life situation in which f is unobserved, it is generally not pos-

sible to explicitly compute the test MSE, bias, or variance for a statistical
learning method. Nevertheless, one should always keep the bias-variance
trade-o in mind. In this book we explore methods that are extremely
flexible and hence can essentially eliminate bias. However, this does not
guarantee that they will outperform a much simpler method such as linear
regression. To take an extreme example, suppose that the true f is linear.
In this situation linear regression will have no bias, making it very hard
for a more flexible method to compete. In contrast, if the true f is highly
non-linear and we have an ample number of training observations, then
we may do better using a highly flexible approach, as in Figure 2.11. In
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More on prediction-error estimates

• Best solution: a large designated test set. Often not
available

• Some methods make a mathematical adjustment to the
training error rate in order to estimate the test error rate.
These include the Cp statistic, AIC and BIC. They are
discussed elsewhere in this course

• Here we instead consider a class of methods that estimate
the test error by holding out a subset of the training
observations from the fitting process, and then applying the
statistical learning method to those held out observations
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Validation-set approach

• Here we randomly divide the available set of samples into
two parts: a training set and a validation or hold-out set.

• The model is fit on the training set, and the fitted model is
used to predict the responses for the observations in the
validation set.

• The resulting validation-set error provides an estimate of
the test error. This is typically assessed using MSE in the
case of a quantitative response and misclassification rate in
the case of a qualitative (discrete) response.
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The Validation process

!"#"$""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""%"
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A random splitting into two halves: left part is training set,
right part is validation set
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Example: automobile data

• Want to compare linear vs higher-order polynomial terms
in a linear regression

• We randomly split the 392 observations into two sets, a
training set containing 196 of the data points, and a
validation set containing the remaining 196 observations.
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Left panel shows single split; right panel shows multiple splits
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Drawbacks of validation set approach

• the validation estimate of the test error can be highly
variable, depending on precisely which observations are
included in the training set and which observations are
included in the validation set.

• In the validation approach, only a subset of the
observations — those that are included in the training set
rather than in the validation set — are used to fit the
model.

• This suggests that the validation set error may tend to
overestimate the test error for the model fit on the entire
data set.

Why?
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K-fold Cross-validation

• Widely used approach for estimating test error.

• Estimates can be used to select best model, and to give an
idea of the test error of the final chosen model.

• Idea is to randomly divide the data into K equal-sized
parts. We leave out part k, fit the model to the other
K � 1 parts (combined), and then obtain predictions for
the left-out kth part.

• This is done in turn for each part k = 1, 2, . . .K, and then
the results are combined.
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K-fold Cross-validation in detail

Divide data into K roughly equal-sized parts (K = 5 here)

1

TrainTrainValidation Train Train

5432
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K-fold cross validation

FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE estimates.



The details

• Let the K parts be C1, C2, . . . CK , where Ck denotes the
indices of the observations in part k. There are nk

observations in part k: if N is a multiple of K, then
nk = n/K.

• Compute

CV(K) =
KX

k=1

nk

n
MSEk

where MSEk =
P

i2Ck
(yi � ŷi)2/nk, and ŷi is the fit for

observation i, obtained from the data with part k removed.

• Setting K = n yields n-fold or leave-one out

cross-validation (LOOCV).
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leave one out cross validation



A nice special case!

• With least-squares linear or polynomial regression, an
amazing shortcut makes the cost of LOOCV the same as
that of a single model fit! The following formula holds:

CV(n) =
1

n

nX

i=1

✓
yi � ŷi
1� hi

◆
2

,

where ŷi is the ith fitted value from the original least
squares fit, and hi is the leverage (diagonal of the “hat”
matrix; see book for details.) This is like the ordinary
MSE, except the ith residual is divided by 1� hi.

• LOOCV sometimes useful, but typically doesn’t shake up

the data enough. The estimates from each fold are highly
correlated and hence their average can have high variance.

• a better choice is K = 5 or 10.
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How to choose K ?

• K = N , the cv estimator is approximately unbiased, but
can have high variance because the N training sets are so
similar. The computational burden is also considerable.

• K = 5, cv has lower variance. But bias could be a problem,
depending on how the performance of the learning method
varies with the size of the training set. (learning curve, see
Fig 7.8)

• To summarize, if the learning curve has a considerable
slope, five or tenfold cv will be overestimated.



Generalized cross-validation

• Generalized cross-validation provides a convenient
approximation to leave-one out cross-validation, for linear
fitting under squared-error loss.a linear fitting method is
one for which we can write

ŷ = Sy (7.50)

Now for many linear fitting methods,

1

N

NX

i=1

h
yi � f̂�i (xi)

i2
=

1

N

NX

i=1

"
yi � f̂ (xi)

1� Sii

#2

, (7.51)

whereSii is the ith diagonal element of S (see Exercise 7.3) .
The GCV approximation is

GCV(f̂) =
1

N

NX

i=1

"
yi � f̂ (xi)

1� trace(S)/N

#2

. (7.52)



Cross-validation with tuning parameter

Given a set of models f(x,↵) indexed by a tuning parameter ↵,
denote by f̂�k(x,↵) the ↵ th model fit with the kth part of the
data removed. Then for this set of models we define

CV(f̂ ,↵) =
1

N

NX

i=1

L
⇣
yi, f̂

�(i) (xi,↵)
⌘
. (7.49)

The function CV(f̂ ,↵) provides an estimate of the test error
curve, and we find the tuning parameter ↵̂ that minimizes it.
Our final chosen model is f(x, ↵̂), which we then fit to all the
data.



Auto data revisited
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True and estimated test MSE for the simulated data
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Other issues with Cross-validation

• Since each training set is only (K � 1)/K as big as the
original training set, the estimates of prediction error will
typically be biased upward.

Why?

• This bias is minimized when K = n (LOOCV), but this
estimate has high variance, as noted earlier.

• K = 5 or 10 provides a good compromise for this
bias-variance tradeo↵.
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Cross-Validation for Classification Problems

• We divide the data into K roughly equal-sized parts
C1, C2, . . . CK . Ck denotes the indices of the observations
in part k. There are nk observations in part k: if n is a
multiple of K, then nk = n/K.

• Compute

CVK =
KX

k=1

nk

n
Errk

where Errk =
P

i2Ck
I(yi 6= ŷi)/nk.

• The estimated standard deviation of CVK is

cSE(CVK) =

vuut
KX

k=1

(Errk � Errk)2/(K � 1)

• This is a useful estimate, but strictly speaking, not quite
valid.

Why not?
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FIGURE 5.7. Logistic regression fits on the two-dimensional classification data displayed in
Figure 2.13. The Bayes decision boundary is represented using a purple dashed line. Estimated
decision boundaries from linear, quadratic, cubic and quartic (degrees 1-4) logistic regressions are
displayed in black. The test error rates for the four logistic regression fits are respectively
0.201, 0.197, 0.160, and 0.162, while the Bayes error rate is 0.133.



FIGURE 5.8. Test error (brown), training error (blue), and 10-fold CV error
(black) on the two-dimensional classification data displayed in Figure 5.7 . Left:
Logistic regression using polynomial functions of the predictors. The onder of the
polynomials used is displayed on the x-axis. Right: The KNN classifier with
di↵erent values of K, the number of neighbors used in the KNN classifier.



Cross-validation: right and wrong

• Consider a simple classifier applied to some two-class data:
1. Starting with 5000 predictors and 50 samples, find the 100

predictors having the largest correlation with the class
labels.

2. We then apply a classifier such as logistic regression, using
only these 100 predictors.

How do we estimate the test set performance of this
classifier?

Can we apply cross-validation in step 2, forgetting about
step 1?
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NO!

• This would ignore the fact that in Step 1, the procedure
has already seen the labels of the training data, and made
use of them. This is a form of training and must be
included in the validation process.

• It is easy to simulate realistic data with the class labels
independent of the outcome, so that true test error =50%,
but the CV error estimate that ignores Step 1 is zero!

Try to do this yourself

• We have seen this error made in many high profile
genomics papers.
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The Wrong and Right Way

• Wrong: Apply cross-validation in step 2.

• Right: Apply cross-validation to steps 1 and 2.
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Cross-validation wrong or right?

Consider a classification problem with a large number of
predictors, as may arise, for example, in genomic or proteomic
applications. A typical strategy for analysis might be as follows:

1. Screen the predictors: find a subset of “good” predictors
that show fairly strong (univariate) correlation with the class
labels

2. Using just this subset of predictors, build a multivariate
classifier.

3. Use cross-validation to estimate the unknown tuning
parameters and to estimate the prediction error of the final
model.



Wrong Way
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Right Way

Predictors
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Cross-validation wrong or right?

Is this a correct application of cross-validation? Consider a scenario with N = 50

samples in two equal-sized classes, and p = 5000 quantitative predictors (standard

Gaussian) that are independent of the class labels. The true (test) error rate of

any classifier is 50%. We carried out the above recipe, choosing in step (1) the 100

predictors having highest correlation with the class labels, and then using a

1-nearest neighbor classifier, based on just these 100 predictors, in step (2). Over

50 simulations from this setting, the average CV error rate was 3%. This is far

lower than the true error rate of 50%.

What has happened? The problem is that the predictors have an unfair

advantage, as they were chosen in step (1) on the basis of all of the samples.
Leaving samples out after the variables have been selected does not correctly

mimic the application of the classifier to a completely independent test set, since

these predictors “have already seen” the left out samples.



Cross-validation wrong or right?



Cross-validation wrong or right?

Here is the correct way to carry out cross-validation in this
example:
1. Divide the samples into K cross-validation folds (groups) at
random.
2. For each fold k = 1, 2, . . . ,K
(a) Find a subset of “good” predictors that show fairly strong
(univariate) correlation with the class labels, using all of the
samples except those in fold k.
(b) Using just this subset of predictors, build a multivariate
classifier, using all of the samples except those in fold k.
(c) Use the classifier to predict the class labels for the samples
in fold k.
Overall, samples must be “left out” before any selection or
filtering steps are applied. But, initial unsupervised screening
steps can be done before samples are left out. For example
select with high variance.



The Bootstrap

• The bootstrap is a flexible and powerful statistical tool that
can be used to quantify the uncertainty associated with a
given estimator or statistical learning method.

• For example, it can provide an estimate of the standard
error of a coe�cient, or a confidence interval for that
coe�cient.

22 / 44



Where does the name came from?

• The use of the term bootstrap derives from the phrase to

pull oneself up by one’s bootstraps, widely thought to be
based on one of the eighteenth century “The Surprising
Adventures of Baron Munchausen” by Rudolph Erich
Raspe:

The Baron had fallen to the bottom of a deep lake. Just

when it looked like all was lost, he thought to pick himself

up by his own bootstraps.

• It is not the same as the term “bootstrap” used in
computer science meaning to “boot” a computer from a set
of core instructions, though the derivation is similar.
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A simple example

• Suppose that we wish to invest a fixed sum of money in
two financial assets that yield returns of X and Y ,
respectively, where X and Y are random quantities.

• We will invest a fraction ↵ of our money in X, and will
invest the remaining 1� ↵ in Y .

• We wish to choose ↵ to minimize the total risk, or
variance, of our investment. In other words, we want to
minimize Var(↵X + (1� ↵)Y ).

• One can show that the value that minimizes the risk is
given by

↵ =
�2

Y � �XY

�2

X + �2

Y � 2�XY
,

where �2

X = Var(X),�2

Y = Var(Y ), and �XY = Cov(X,Y ).
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Example continued

• But the values of �2

X , �2

Y , and �XY are unknown.

• We can compute estimates for these quantities, �̂2

X , �̂2

Y ,
and �̂XY , using a data set that contains measurements for
X and Y .

• We can then estimate the value of ↵ that minimizes the
variance of our investment using

↵̂ =
�̂2

Y � �̂XY

�̂2

X + �̂2

Y � 2�̂XY
.
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Example continued
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Each panel displays 100 simulated returns for investments X
and Y . From left to right and top to bottom, the resulting

estimates for ↵ are 0.576, 0.532, 0.657, and 0.651.
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Example continued

• To estimate the standard deviation of ↵̂, we repeated the
process of simulating 100 paired observations of X and Y ,
and estimating ↵ 1,000 times.

• We thereby obtained 1,000 estimates for ↵, which we can
call ↵̂1, ↵̂2, . . . , ↵̂1000.

• The left-hand panel of the Figure on slide 29 displays a
histogram of the resulting estimates.

• For these simulations the parameters were set to
�2

X = 1,�2

Y = 1.25, and �XY = 0.5, and so we know that
the true value of ↵ is 0.6 (indicated by the red line).
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Example continued

• The mean over all 1,000 estimates for ↵ is

↵̄ =
1

1000

1000X

r=1

↵̂r = 0.5996,

very close to ↵ = 0.6, and the standard deviation of the
estimates is

vuut 1

1000� 1

1000X

r=1

(↵̂r � ↵̄)2 = 0.083.

• This gives us a very good idea of the accuracy of ↵̂:
SE(↵̂) ⇡ 0.083.

• So roughly speaking, for a random sample from the
population, we would expect ↵̂ to di↵er from ↵ by
approximately 0.08, on average.
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Results
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Left: A histogram of the estimates of ↵ obtained by generating
1,000 simulated data sets from the true population. Center: A
histogram of the estimates of ↵ obtained from 1,000 bootstrap
samples from a single data set. Right: The estimates of ↵
displayed in the left and center panels are shown as boxplots. In
each panel, the pink line indicates the true value of ↵.
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Now back to the real world

• The procedure outlined above cannot be applied, because
for real data we cannot generate new samples from the
original population.

• However, the bootstrap approach allows us to use a
computer to mimic the process of obtaining new data sets,
so that we can estimate the variability of our estimate
without generating additional samples.

• Rather than repeatedly obtaining independent data sets
from the population, we instead obtain distinct data sets
by repeatedly sampling observations from the original data
set with replacement.

• Each of these “bootstrap data sets” is created by sampling
with replacement, and is the same size as our original
dataset. As a result some observations may appear more
than once in a given bootstrap data set and some not at all.
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Example with just 3 observations

2.8 5.3 3 
1.1 2.1 2 
2.4 4.3 1 

Y X Obs 
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2.8 5.3 3 

Y X Obs 

2.4 4.3 1 
2.8 5.3 3 
1.1 2.1 2 

Y X Obs 

2.4 4.3 1 
1.1 2.1 2 
1.1 2.1 2 

Y X Obs 
Original Data (Z) 

1*Z

2*Z

Z *B

1*α̂

2*α̂

α̂*B

!!
!!
!!
!!
!

!!
!!
!!

!!
!!
!!
!!
!!

A graphical illustration of the bootstrap approach on a small
sample containing n = 3 observations. Each bootstrap data set
contains n observations, sampled with replacement from the
original data set. Each bootstrap data set is used to obtain an
estimate of ↵
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• Denoting the first bootstrap data set by Z⇤1, we use Z⇤1 to
produce a new bootstrap estimate for ↵, which we call ↵̂⇤1

• This procedure is repeated B times for some large value of
B (say 100 or 1000), in order to produce B di↵erent
bootstrap data sets, Z⇤1, Z⇤2, . . . , Z⇤B, and B
corresponding ↵ estimates, ↵̂⇤1, ↵̂⇤2, . . . , ↵̂⇤B.

• We estimate the standard error of these bootstrap
estimates using the formula

SEB(↵̂) =

vuut 1

B � 1

BX

r=1

�
↵̂⇤r � ¯̂↵⇤

�
2
.

• This serves as an estimate of the standard error of ↵̂
estimated from the original data set. See center and right
panels of Figure on slide 29. Bootstrap results are in blue.
For this example SEB(↵̂) = 0.087.
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Bootstrap
• ˆV ar (S(Z )) = 1

B�1
PB

b=1(S(Z
⇤b) � S̄

⇤)2, where
S̄
⇤ =
P

b (S(Z
⇤b)/B)



A general picture for the bootstrap

Real World

Estimate

Random
Sampling Data dataset

Estimated 

Estimate

Bootstrap World

Random
Sampling

Bootstrap 

Bootstrap

PopulationPopulation

f(Z) f(Z⇤
)

Z = (z1, z2, . . . zn)
Z⇤ = (z⇤

1
, z⇤

2
, . . . z⇤n)P

P̂
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The bootstrap in general

• In more complex data situations, figuring out the
appropriate way to generate bootstrap samples can require
some thought.

• For example, if the data is a time series, we can’t simply
sample the observations with replacement (why not?).

• We can instead create blocks of consecutive observations,
and sample those with replacements. Then we paste
together sampled blocks to obtain a bootstrap dataset.
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Other uses of the bootstrap

• Primarily used to obtain standard errors of an estimate.

• Also provides approximate confidence intervals for a
population parameter. For example, looking at the
histogram in the middle panel of the Figure on slide 29, the
5% and 95% quantiles of the 1000 values is (.43, .72).

• This represents an approximate 90% confidence interval for
the true ↵.

How do we interpret this confidence interval?

• The above interval is called a Bootstrap Percentile

confidence interval. It is the simplest method (among many
approaches) for obtaining a confidence interval from the
bootstrap.
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Can the bootstrap estimate prediction error?

• In cross-validation, each of the K validation folds is
distinct from the other K � 1 folds used for training: there
is no overlap. This is crucial for its success.

Why?

• To estimate prediction error using the bootstrap, we could
think about using each bootstrap dataset as our training
sample, and the original sample as our validation sample.

• But each bootstrap sample has significant overlap with the
original data. About two-thirds of the original data points
appear in each bootstrap sample. Can you prove this?

• This will cause the bootstrap to seriously underestimate
the true prediction error. Why?

• The other way around— with original sample = training
sample, bootstrap dataset = validation sample— is worse!
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Removing the overlap

• Can partly fix this problem by only using predictions for
those observations that did not (by chance) occur in the
current bootstrap sample.

• But the method gets complicated, and in the end,
cross-validation provides a simpler, more attractive
approach for estimating prediction error.
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Bootstrap for prediction error

• Bootstrap error underestimate the true error.

dErrboot =
1

B

1

N

BX

b=1

NX

i=1

L
⇣
yi, f̂

⇤b
(xi)

⌘

• For example, y is class labels and independent with X. Then the true error

rate is 0.5 , while the expecation of dErrboot is 0.5⇥ 0.368 = 0.184.
Underestimate.

• The leave one out bootstrap estimate of prediction error

dErr
(1)

=
1

N

NX

i=1

1

|C�i|
X

b2C�i

L
⇣
yi, f̂

⇤b
(xi)

⌘

where C�i
is the set of indices of the bootstrap samples b that do not

contain observation i.

• The leave one out bootstrap solves the overfitting problem su↵ered by

dErrboot, but has the training set size bias, because the average number of

distincet observations in each bootstrap sample is 0.632N.
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Bootstrap for prediction error

• The .632 estimator is designed to alleviate this bias.

dErr
(.632)

= 0.368err + 0.632dErr
(1)

• The .632 estimator works well in light fitting situations, but can break

down in overfit ones. For example, Suppose we have two equal-size classes,

with the targets independent of the class labels, and we apply a one-nearest

neighbor rule. Then err = 0, dErr
(1)

= 0.5, dErr
(.632)

= 0.632⇥ 0.5 = 0.316.
True error is 0.5.

• One can improve the .632 estimator by taking into account the amount of

overfitting. Define � to be the no-information error rate.

�̂ =
1

N2

NX

i=1

NX

i0=1

L
⇣
yi, f̂ (xi0 )

⌘
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Bootstrap for prediction error

Using this, the relative overfitting rate is defined to be

R̂ =

dErr
(1)

� err

�̂ � err
, (7.60)

a quantity that ranges from 0 if there is no overfitting

✓
dErr

(1)
= err

◆
to 1 if the

overfitting equals the no-information value �̂ � err. Finally, we define the“.632+”

estimator by

dErr
(.632+)

= (1� ŵ) · err + ŵ ·dErr
(1)

with ŵ =
.632

1� .368R̂
.

(7.61)

The weight w ranges from .632 if R̂ = 0 to 1 if R̂ = 1, so dErr
(.632+)

ranges from

dErr
(.632)

to dErr
(1)

. Again, the derivation of ( 7.61) is complicated: roughly

speaking, it produces a compromise between the leave-one-out bootstrap and the

training error rate that depends on the amount of overfitting. For the 1

-nearest-neighbor problem with class labels independent of the inputs, ŵ = R̂ = 1,

so dErr
(.632+)

= dErr
(1)

, which has the correct expectation of 0.5. In other problems

with less overfitting, dErr
(.632+)

will lie somewhere between err and dErr
(1)

.
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