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Cross-validation and the Bootstrap

e In the section we discuss two resampling methods:
cross-validation and the bootstrap.
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Cross-validation and the Bootstrap

e In the section we discuss two resampling methods:
cross-validation and the bootstrap.

e These methods refit a model of interest to samples formed
from the training set, in order to obtain additional
information about the fitted model.

e For example, they provide estimates of test-set prediction
error, and the standard deviation and bias of our
parameter estimates



Training Error versus Test error

Recall the distinction between the test error and the
training error:

The test error is the average error that results from using a
statistical learning method to predict the response on a new
observation, one that was not used in training the method.

In contrast, the training error can be easily calculated by
applying the statistical learning method to the observations
used in its training.

But the training error rate often is quite different from the
test error rate, and in particular the former can
dramatically underestimate the latter.



Assessing Model Accuracy

Suppose we fit a model f () to some training data
Tr = {z;,v;}Y, and we wish to see how well it performs.

e We could compute the average squared prediction error
over Tr:
MSET = Avejere[ys — f(2:)]?
This may be biased toward more overfit models.

e Instead we should, if possible, compute it using fresh test
data Te = {z;,y; 1)1

MSETe = AVeieTe[yi - f(xl)}Q



Prediction Error

Training- versus Test-Set Performance

High Bias

Low Variance

/

Training Sample

Test Sample

Low Bias

High Variance

Model Complexity
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Black curve is truth. Red curve on right is MSEr., grey curve is
MSET,. Orange, blue and green curves/squares correspond to fits of
different flexibility.
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Here the truth is smoother, so the smoother fit and linear model do
really well.
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Here the truth is wiggly and the noise is low, so the more flexible fits
do the best.



Bias-Variance Trade-off

Suppose we have fit a model f(:z:) to some training data Tr, and
let (zg,y0) be a test observation drawn from the population. If
the true model is Y = f(X) + € (with f(z) = E(Y|X = z)),
then

N 2 N ~
E (yo — f(x0)> = Var(f(z0)) + [Bias(f(x0))]2 + Var(e).

The expectation averages over the variability of yy as well as

the variability in Tr. Note that Bias(f(x0))] = E[f(x0)] — f(20).
Typically as the flexibility of f increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.



Bias-variance trade-off for the three examples
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More on prediction-error estimates

e Best solution: a large designated test set. Often not
available

e Some methods make a mathematical adjustment to the
training error rate in order to estimate the test error rate.
These include the Cp statistic, AIC and BIC. They are
discussed elsewhere in this course

e Here we instead consider a class of methods that estimate
the test error by holding out a subset of the training
observations from the fitting process, and then applying the
statistical learning method to those held out observations



Validation-set approach

e Here we randomly divide the available set of samples into
two parts: a training set and a validation or hold-out set.
e The model is fit on the training set, and the fitted model is

used to predict the responses for the observations in the
validation set.

e The resulting validation-set error provides an estimate of
the test error. This is typically assessed using MSE in the
case of a quantitative response and misclassification rate in
the case of a qualitative (discrete) response.



The Validation process
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A random splitting into two halves: left part is training set,
right part is validation set
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Example: automobile data

e Want to compare linear vs higher-order polynomial terms
in a linear regression

e We randomly split the 392 observations into two sets, a
training set containing 196 of the data points, and a
validation set containing the remaining 196 observations.

mpg=b0+b1*horsepower+b2*horsepower 2+e
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Left panel shows single split; right panel shows multiple splits





Drawbacks of validation set approach

e the validation estimate of the test error can be highly
variable, depending on precisely which observationsare
included in the training set and which observations are
included in the validation set.

In the validation approach, only a subset of the
observations — those that are included in the training set
rather than in the validation set — are used to fit the
model.

This suggests that the validation set error may tend to
overestimate the test error for the model fit on the entire
data set.
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Drawbacks of validation set approach

e the validation estimate of the test error can be highly
variable, depending on precisely which observations are
included in the training set and which observations are
included in the validation set.

e In the validation approach, only a subset of the
observations — those that are included in the training set
rather than in the validation set — are used to fit the
model.

e This suggests that the validation set error may tend to
overestimate the test error for the model fit on the entire
data set. Why?



K-fold Cross-validation

Widely used approach for estimating test error.

Estimates can be used to select best model, and to give an
idea of the test error of the final chosen model.

Idea is to randomly divide the data into K equal-sized
parts. We leave out part k, fit the model to the other
K — 1 parts (combined), and then obtain predictions for
the left-out kth part.

This is done in turn for each part £ =1,2,... K, and then
the results are combined.
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K-fold Cross-validation in detail

Divide data into K roughly equal-sized parts (K = 5 here)
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K-fold cross validation
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FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE estimates.



The details

e Let the K parts be C1,Cy,...Ck, where C denotes the
indices of the observations in part k. There are ny
observations in part k: if N is a multiple of K, then
ng =n/K.

e Compute
K

CViey = > "EMSE,
k=1 "
where MSE,;, = Zie()k (yi — 9:)?/ng, and §; is the fit for
observation ¢, obtained from the data with part k& removed.



The details

e Let the K parts be C1,Cy,...Ck, where C denotes the
indices of the observations in part k. There are ny
observations in part k: if N is a multiple of K, then

ng =n/K.

Compute
K

CViey = D “EMSEy
k=1 "
where MSE,;, = Zie()k (yi — 9:)?/ng, and §; is the fit for
observation ¢, obtained from the data with part k& removed.

Setting K = n yields n-fold or leave-one out
cross-validation (LOOCV).



leave one out cross validation
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A nice special case!

e With least-squares linear or polynomial regression, an
amazing shorteut makes the cost of LOOCV the same as
that of a single model fit! The following formula holds:

LK (v -0\’
CV(”)_nZ(l—hi)7

i=1

where g; is the ith fitted value from the original least
squares fit, and h; is the leverage (diagonal of the “hat”
matrix; see book for details.) This is like the ordinary
MSE, except the ith residual is divided by 1 — h;.
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A nice special case!

e With least-squares linear or polynomial regression, an
amazing shortcut makes the cost of LOOCYV the same as
that of a single model fit! The following formula holds:

LK (v -0\’
CV(”)_nZ(l—hi)7

i=1

where g; is the ith fitted value from the original least
squares fit, and h; is the leverage (diagonal of the “hat”
matrix; see book for details.) This is like the ordinary
MSE, except the ith residual is divided by 1 — h;.

e LOOCYV sometimes useful, but typically doesn’t shake up
the data enough. The estimates from each fold are highly
correlated and hence their average can have high variance.

e a better choice is K = 5 or 10.



How to choose K 7

e K = N, the cv estimator is approximately unbiased, but
can have high variance because the N training sets are so
similar. The computational burden is also considerable.

e K =5, cv has lower variance. But bias could be a problem,
depending on how the performance of the learning method
varies with the size of the training set. (learning curve, see
Fig 7.8)

® To summarize, if the learning curve has a considerable
slope, five or tenfold cv will be overestimated.
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Generalized cross-validation

® Generalized cross-validation provides a convenient
approximation to leave-one out cross-validation, for linear
fitting under squared-error loss.a linear fitting method is
one for which we can write

y = Sy (7.50)
Now for many linear fitting methods,

1 - 2 1w fw) i
Nt =g Y [1—5] S
i=1 "

i=1

where S;; is the ith diagonal element of S (see Exercise 7.3) .
The GCV approximation is

2
i)
Gevis N Z [1 — trace(S )/N] ' (7.:52)



Cross-validation with tuning parameter

Given a set of models f(z,a) indexed by a tuning parameter «,
denote by f~*(z,a) the a th model fit with the kth part of the
data removed. Then for this set of models we define

ZL(yZ, =) ( a:z,a)). (7.49)

The function CV( f , ) provides an estimate of the test error
curve, and we find the tuning parameter & that minimizes it.
Our final chosen model is f(x, &), which we then fit to all the
data.



Mean Squared Error
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True and estimated test MSE for the simulated data

blue: true test MSE
black dashed: LOOCV
orange: 10-fold
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Other issues with Cross-validation

e Since each training set is only (K — 1)/K as big as the
original training set, the estimates of prediction error will
typically be biased upward.
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Other issues with Cross-validation

e Since each training set is only (K — 1)/K as big as the
original training set, the estimates of prediction error will
typically be biased upward. Why?

e This bias is minimized when K =n (LOOCV), but this
estimate has high variance, as noted earlier.

e K =5 or 10 provides a good compromise for this
bias-variance tradeoff.
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Cross-Validation for Classification Problems

We divide the data into K roughly equal-sized parts
C1,Cs,...Ck. C) denotes the indices of the observations
in part k. There are nj observations in part k: if n is a
multiple of K, then ny =n/K.

Compute
K n
k
CVg = —FErr
K ;}1 o Tk

where Erry, = Zz’eck I(y; # 4i)/nk.
The estimated standard deviation of CV is

K
SE(CVi) = | Y (Brry, — Errg)2/(K - 1)
k=1

This is a useful estimate, but strictly speaking, not quite
valid.



Cross-Validation for Classification Problems

We divide the data into K roughly equal-sized parts
C1,Cs,...Ck. C) denotes the indices of the observations
in part k. There are nj observations in part k: if n is a
multiple of K, then ny =n/K.

Compute
K n
k
CVg = —FErr
K ;}1 o Tk

where Erry, = Zz’eck I(y; # 4i)/nk.
The estimated standard deviation of CV is

K
SE(CVi) = | Y (Brry, — Errg)2/(K - 1)
k=1

This is a useful estimate, but strictly speaking, not quite
valid. Why not?



FIGURE 5.7. Logistic regression fits on the two-dimensional classification data displayed in
Figure 2.13. The Bayes decision boundary is represented using a purple dashed line. Estimated
decision boundaries from linear, quadratic, cubic and quartic (degrees 1-4) logistic regressions are
displayed in black. The test error rates for the four logistic regression fits are respectively
0.201,0.197,0.160, and 0.162, while the Bayes error rate is 0.133.
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FIGURE 5.8. Test error (brown), training error (blue), and 10-fold CV error
(black) on the two-dimensional classification data displayed in Figure 5.7 . Left:
Logistic regression using polynomial functions of the predictors. The onder of the
polynomials used is displayed on the x-axis. Right: The KNN classifier with
different values of K, the number of neighbors used in the KNN classifier.



Cross-validation: right and wrong

e Consider a simple classifier applied to some two-class data:

1. Starting with 5000 predictors and 50 samples, find the 100
predictors having the largest correlation with the class
labels.

2. We then apply a classifier such as logistic regression, using
only these 100 predictors.

How do we estimate the test set performance of this
classifier?



Cross-validation: right and wrong

e Consider a simple classifier applied to some two-class data:

1. Starting with 5000 predictors and 50 samples, find the 100
predictors having the largest correlation with the class
labels.

2. We then apply a classifier such as logistic regression, using
only these 100 predictors.

How do we estimate the test set performance of this
classifier?

Can we apply cross-validation in step 2, forgetting about
step 17
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NO!

e This would ignore the fact that in Step 1, the procedure
has already seen the labels of the training data, and made
use of them. This is a form of training and must be
included in the validation process.

e [t is easy to simulate realistic data with the class labels
independent of the outcome, so that true test error =50%,
but the CV error estimate that ignores Step 1 is zero!
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NO!

e This would ignore the fact that in Step 1, the procedure
has already seen the labels of the training data, and made
use of them. This is a form of training and must be
included in the validation process.

e [t is easy to simulate realistic data with the class labels
independent of the outcome, so that true test error =50%,
but the CV error estimate that ignores Step 1 is zero!

Try to do this yourself

e We have seen this error made in many high profile
genomics papers.
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The Wrong and Right Way

e Wrong: Apply cross-validation in step 2.
e Right: Apply cross-validation to steps 1 and 2.
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Cross-validation wrong or right?

Consider a classification problem with a large number of
predictors, as may arise, for example, in genomic or proteomic
applications. A typical strategy for analysis might be as follows:

1. Screen the predictors: find a subset of “good” predictors
that show fairly strong (univariate) correlation with the class
labels

2. Using just this subset of predictors, build a multivariate
classifier.

3. Use cross-validation to estimate the unknown tuning
parameters and to estimate the prediction error of the final
model.
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Cross-validation wrong or right?

Is this a correct application of cross-validation? Consider a scenario with N = 50
samples in two equal-sized classes, and p = 5000 quantitative predictors (standard
Gaussian) that are independent of the class labels. The true (test) error rate of
any classifier is 50%. We carried out the above recipe, choosing in step (1) the 100
predictors having highest correlation with the class labels, and then using a
1-nearest neighbor classifier, based on just these 100 predictors, in step (2). Over
50 simulations from this setting, the average CV error rate was 3%. This is far
lower than the true error rate of 50%.

What has happened? The problem is that the predictors have an unfair
advantage, as they were chosen in step (1) on the basis of all of the samples.
Leaving samples out after the variables have been selected does not correctly
mimic the application of the classifier to a completely independent test set, since
these predictors “have already seen” the left out samples.



Cross-validation wrong or right?
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(=]

@
P
o
5 &
3
g 2
[

o

T 1T
-1.0 -0.5 0.0 0.5 1.0
Correlations of Selected Predictors with Outcome
Right way

(=]

(]
>
o
s &
3
g 2
[

o

I T T T 1
-1.0 -0.5 0.0 0.5 1.0

Correlations of Selected Predictors with Outcome



Cross-validation wrong or right?

Here is the correct way to carry out cross-validation in this
example:

1. Divide the samples into K cross-validation folds (groups) at
random.

2. For each fold k=1,2,..., K

(a) Find a subset of “good” predictors that show fairly strong
(univariate) correlation with the class labels, using all of the
samples except those in fold k.

(b) Using just this subset of predictors, build a multivariate
classifier, using all of the samples except those in fold k.

(c) Use the classifier to predict the class labels for the samples
in fold k.

Overall, samples must be “left out” before any selection or
filtering steps are applied. But, initial unsupervised screening
steps can be done before samples are left out. For example
select with high variance.



The Bootstrap

e The bootstrap is a flexible and powerful statistical tool that
can be used to quantify the uncertainty associated with a
given estimator or statistical learning method.

e For example, it can provide an estimate of the standard
error of a coefficient, or a confidence interval for that
coefficient.



Where does the name came from?

e The use of the term bootstrap derives from the phrase to
pull oneself up by one’s bootstraps, widely thought to be
based on one of the eighteenth century “The Surprising
Adventures of Baron Munchausen” by Rudolph Erich
Raspe:

The Baron had fallen to the bottom of a deep lake. Just
when it looked like all was lost, he thought to pick himself
up by his own bootstraps.

e It is not the same as the term “bootstrap” used in
computer science meaning to “boot” a computer from a set
of core instructions, though the derivation is similar.
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A simple example

e Suppose that we wish to invest a fixed sum of money in
two financial assets that yield returns of X and Y,
respectively, where X and Y are random quantities.

e We will invest a fraction « of our money in X, and will
invest the remaining 1 — « in Y.

e We wish to choose a to minimize the total risk, or
variance, of our investment. In other words, we want to
minimize Var(aX + (1 — a)Y).



A simple example

Suppose that we wish to invest a fixed sum of money in
two financial assets that yield returns of X and Y,
respectively, where X and Y are random quantities.
We will invest a fraction « of our money in X, and will
invest the remaining 1 — « in Y.
We wish to choose a to minimize the total risk, or
variance, of our investment. In other words, we want to
minimize Var(aX + (1 — a)Y).
One can show that the value that minimizes the risk is
given by
0% —oxy

2 2 _ 9 ’

ox + oy oxXy

where 0% = Var(X), o2 = Var(Y), and oxy = Cov(X,Y).

o =



Example continued

e But the values of ag(, 0)2/, and oxy are unknown.

e We can compute estimates for these quantities, 63(, &32,,
and 6xy, using a data set that contains measurements for
X andY.

e We can then estimate the value of o that minimizes the
variance of our investment using

A2 ~
A /\2 A *
Ox —‘rO’Y —QUXY

GA{:



Example continued
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Each panel displays 100 simulated returns for investments X
and Y . From left to right and top to bottom, the resulting
estimates for a are 0.576, 0.532, 0.657, and 0.651.
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Example continued

To estimate the standard deviation of &, we repeated the
process of simulating 100 paired observations of X and Y,
and estimating o 1,000 times.

We thereby obtained 1,000 estimates for «, which we can
call éél, @2, . ,(3[1000.

The left-hand panel of the Figure on slide 29 displays a
histogram of the resulting estimates.

For these simulations the parameters were set to
a§< =1, 012, = 1.25, and oxy = 0.5, and so we know that
the true value of « is 0.6 (indicated by the red line).



Example continued

e The mean over all 1,000 estimates for « is

1000
1

G = o0 Z &, = 0.5996,

very close to a = 0.6, and the standard deviation of the
estimates is

W1_1 D (& —a)® =0.083.
r=1
e This gives us a very good idea of the accuracy of &:
SE(&) ~ 0.083.
e So roughly speaking, for a random sample from the
population, we would expect & to differ from « by
approximately 0.08, on average.
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Results

200
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Left: A histogram of the estimates of « obtained by generating
1,000 simulated data sets from the true population. Center: A
histogram of the estimates of o obtained from 1,000 bootstrap
samples from a single data set. Right: The estimates of «
displayed in the left and center panels are shown as boxplots. In
each panel, the pink line indicates the true value of a.
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Now back to the real world

The procedure outlined above cannot be applied, because
for real data we cannot generate new samples from the
original population.

However, the bootstrap approach allows us to use a
computer to mimic the process of obtaining new data sets,
so that we can estimate the variability of our estimate
without generating additional samples.

Rather than repeatedly obtaining independent data sets
from the population, we instead obtain distinct data sets
by repeatedly sampling observations from the original data
set with replacement.

Each of these “bootstrap data sets” is created by sampling
with replacement, and is the same size as our original
dataset. As a result some observations may appear more
than once in a given bootstrap data set and some not at all.
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Example with just 3 observations

3 [53 [28 o
43 |24
53 [28

Obs | X Y

2.1 1.1
53 |28 a
43 |24 :

1 43 |24
2 21 |11
3 53 |28

X Y

2.1 |11
21 |11
1 43 |24

A graphical illustration of the bootstrap approach on a small
sample containing n = 3 observations. Each bootstrap data set
contains n observations, sampled with replacement from the
original data set. Each bootstrap data set is used to obtain an
estimate of «



Denoting the first bootstrap data set by Z*!, we use Z*! to
produce a new bootstrap estimate for «, which we call &*!

This procedure is repeated B times for some large value of
B (say 100 or 1000), in order to produce B different
bootstrap data sets, Z*1, Z*2, ..., Z*B and B
corresponding « estimates, &*1, &*2, ..., a*b.

We estimate the standard error of these bootstrap
estimates using the formula

1 _
SEg(a) = ﬁz(d*r—@*)Q-
r=1

This serves as an estimate of the standard error of &
estimated from the original data set. See center and right
panels of Figure on slide 29. Bootstrap results are in blue.
For this example SEg(&) = 0.087.

¥



Bootstrap
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A general picture for the bootstrap
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The bootstrap in general

e In more complex data situations, figuring out the
appropriate way to generate bootstrap samples can require
some thought.

e For example, if the data is a time series, we can’t simply
sample the observations with replacement (why not?).
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The bootstrap in general

e In more complex data situations, figuring out the
appropriate way to generate bootstrap samples can require
some thought.

e For example, if the data is a time series, we can’t simply
sample the observations with replacement (why not?).

e We can instead create blocks of consecutive observations,
and sample those with replacements. Then we paste
together sampled blocks to obtain a bootstrap dataset.
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Other uses of the bootstrap

e Primarily used to obtain standard errors of an estimate.

e Also provides approximate confidence intervals for a
population parameter. For example, looking at the
histogram in the middle panel of the Figure on slide 29, the
5% and 95% quantiles of the 1000 values is (.43,.72).

e This represents an approximate 90% confidence interval for
the true a.
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Other uses of the bootstrap

Primarily used to obtain standard errors of an estimate.

Also provides approximate confidence intervals for a
population parameter. For example, looking at the
histogram in the middle panel of the Figure on slide 29, the
5% and 95% quantiles of the 1000 values is (.43,.72).

This represents an approximate 90% confidence interval for
the true . How do we interpret this confidence interval?
The above interval is called a Bootstrap Percentile
confidence interval. It is the simplest method (among many
approaches) for obtaining a confidence interval from the
bootstrap.

test critical value
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Can the bootstrap estimate prediction error?

e In cross-validation, each of the K validation folds is
distinct from the other K — 1 folds used for training: there
s no overlap. This is crucial for its success. Why?

e To estimate prediction error using the bootstrap, we could
think about using each bootstrap dataset as our training
sample, and the original sample as our validation sample.

e But each bootstrap sample has significant overlap with the
original data. About two-thirds of the original data points
appear in each bootstrap sample. Can you prove this?

e This will cause the bootstrap to seriously underestimate
the true prediction error. Why?

The other way around— with original sample = training
sample, bootstrap dataset = validation sample— is worse!
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Removing the overlap

e Can partly fix this problem by only using predictions for
those observations that did not (by chance) occur in the
current bootstrap sample.

e But the method gets complicated, and in the end,
cross-validation provides a simpler, more attractive
approach for estimating prediction error.



Bootstrap for prediction error

Bootstrap error underestimate the true error.

_ 11 X R
Erteoot = 5y > > L (yzwf*b (%‘))

b=11i=1

For example, y is class labels and independent with X. Then the true error
rate is 0.5 , while the expecation of Erry,q: is 0.5 X 0.368 = 0.184.
Underestimate.

The leave one out bootstrap estimate of prediction error

W _
Z IC |

OOB:out of bag error
where C~* is the set of indices of the bootstrap samples b that do not
contain observation i.

> L(v (@)

beC—*

The leave one out bootstrap solves the overfitting problem suffered by
ErTpoot, but has the training set size bias, because the average number of
distincet observations in each bootstrap sample is 0.632N.
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Bootstrap for prediction error

The .632 estimator is designed to alleviate this bias.

Brr % Z 0.368e + 0.632Err

(1)
The .632 estimator works well in light fitting situations, but can break
down in overfit ones. For example, Suppose we have two equal-size classes,

with the targets independent of the class labels, and we apply a one-nearest
neighbor rule. Then &7 = 0, Brr ) = 0.5, Brr % = 0.632 x 0.5 = 0.316.

True error is 0.5.

One can improve the .632 estimator by taking into account the amount of
overfitting. Define v to be the no-information error rate.
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Bootstrap for prediction error

Using this, the relative overfitting rate is defined to be

—
. E -
R=1 —er (7.60)
4 —err

—(1
a quantity that ranges from 0 if there is no overfitting (Err( ) = ﬁ) to 1 if the

overfitting equals the no-information value 4 — err. Finally, we define the“.632+4”
estimator by

B O (1~ w) e 4 B
L 632 (7.61)
with w = ———.
1— .368R

R . —(.632
The weight w ranges from .632 if R=0to 1if R=1, so Err( +

—(.632 —(1
Err( ) to Err< ). Again, the derivation of ( 7.61) is complicated: roughly
speaking, it produces a compromise between the leave-one-out bootstrap and the
training error rate that depends on the amount of overfitting. For the 1 .

-nearest-neighbor problem with class labels independent of the inputs, w = R =1,
——(.632 —(1

) Err( +_ Err( ), which has the correct expectation of 0.5. In other problems

(.632+)

ranges from

o —(1
with less overfitting, Err will lie somewhere between err and Err< )
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RANDOM LASSO
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University of Michigan

We propose a computationally intensive method, the random lasso
method, for variable selection in linear models. The method consists of two
major steps. In step 1, the lasso method is applied to many bootstrap samples,
each using a set of randomly selected covariates. A measure of importance is
yielded from this step for each covariate. In step 2, a similar procedure to the
first step is implemented with the exception that for each bootstrap sample,
a subset of covariates is randomly selected with unequal selection probabil-
ities determined by the covariates’ importance. Adaptive lasso may be used
in the second step with weights determined by the importance measures. The
final set of covariates and their coefficients are determined by averaging boot-
strap results obtained from step 2. The proposed method alleviates some of
the limitations of lasso, elastic-net and related methods noted especially in
the context of microarray data analysis: it tends to remove highly correlated
variables altogether or select them all, and maintains maximal flexibility in
estimating their coefficients, particularly with different signs; the number of
selected variables is no loneer limited bv the sample size: and the resulting
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ALGORITHM (“Generate” and “Select”). Step 1. Generating importance mea-
sures for all coefficients:

la. Draw B bootstrap samples with size n by sampling with replacement from
the original training data set.

1b. For the b;th bootstrap sample, b1 € {1,..., B}, randomly select g; can-
didate variables, and apply lasso to obtain estimators ﬁ;b‘) for Bj, j=1,...,p.
Estimators are zero for coefficients of those unselected variables, either outside the
subset of g; variables, or excluded by lasso.

Ic. Compute the importance measure of x; by I; = |B~1 Zfl:1 ﬁ}b‘)l.

Step 2. Selecting variables.

2a. Draw another set of B bootstrap samples with size n by sampling with
replacement from the original training data set.

2b. For the byth bootstrap sample, b, € {1, ..., B}, randomly select g, candi-
date variables with selection probability of x; proportional to its importance /;
obtained in step 1c, and apply lasso (or adaptive lasso) to obtain estimators B;bZ)
for B;, j =1,..., p. Estimators are zero for coefficients of those unselected vari-
ables, either outside the subset of g, variables, or excluded by lasso.

2c. Compute the final estimator ,3 ; of Bj by ﬁ = Bl Zfzzl B;bz)_
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Data with a large p (number of covariates) and/or a large n (sample size) are now commonly encoun-
tered. For many problems, regularization especially penalization is adopted for estimation and variable
selection. The straightforward application of penalization to large datasets demands a “big computer”

with high computational power. To improve computational feasibility, we develop bootstrap penaliza-
tion, which dissects a big penalized estimation into a set of small ones, which can be executed in a highly

parallel manner and each only d ds a “small . The takes different
strategies for data with different characteristics. For data with a large p but a small to moderate n,
covariates are first clustered into relatively & blocks. The h consists of

two sequential steps. In each step and for each bootstrap sample, we select blocks of covariates and
run penalization. The results from multiple bootstrap samples are pooled to generate the final estimate.
For data with a large » but a small to moderate p, we bootstrap a small number of subjects, apply
penalized estimation, and then conduct a weighted average over multiple bootstrap samples. For data
with a large p and a large », the natural marriage of the previous two methods |s applied. Numencal
studies, including simulations and data analysis, show that the prop h has

and numerical advantages over the straightforward application cf peuallzauon AnR package has been
toi the methods.

Keywords: Bootstrap; Computational feasibility; Large datasets; Penalization.
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covariates

sample % / 7

Figure 1 Analysis scheme for data with (a) a large p and a small to moderate n (left), (b) a large n
and a small to moderate p (middle), and (c) a large p and a large n (right). The shaded areas represent

data analyzed in one bootstrap run.
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3.1 Bootstrap penalization for data with a large p

With such data, the key is to reduce p to a more manageable level. The proposed method is realized in
three steps.

Step 1: Cluster the p covariates into K nonoverlapping blocks.

With a specific clustering approach and number of blocks k, denote (Ci, ..., C;) as the index sets of
resulted blocks. C;NC; = @ fori # j, and > ) IC;l = p. K, the optimal number of blocks, is chosen by

min__, (min dist(u,v))

minimizing the Dunn Index (Dunn, 1974; Handl et al., 2005) defined as el
dist (u, v) is the distance between covariates u and v, and diam(C ) is the maximum distance between
any two covariates in C e With the Dunn Index, we generate nonoverlapping blocks with the highest
degree of compactness and separation.

ueC ,veC;

max, diam(C)) » Where
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Step 2: Generate an importance measure for each block.

1. Draw B, bootstrap samples—each with sample size »—by sampling with replacement from
the original data.
2. Forb, =1to By:

(a) Select k, candidate blocks at random from the K blocks. Denote Efz c{1,2,...,K}asthe
index set of selected blocks of the b,-th bootstrap sample and HllJ * as the corresponding
index set of selected covariates.

(b) Apply Lasso to the bootstrap sample and generate the estimate by minimizing

2

S —a= 3 g | +2 Y I8

i=1 . b, . b.
JjeH,? JjeH,?
Here we use the superscript “b,” to denote the b,-th bootstrap sample. Note that only coeffi-
. s . b . . b
cients for covariates in H,* are estimated. Set the estimate for 8; = Ofor j € {1, ..., p)\H,".

Denote the resulted estimate as ﬁ(.bz).
3. Compute the importance measure of block k(= 1, ..., K) as
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Step 3: Generate the final selection and estimation results.

1. Draw B; bootstrap samples—each with sample size n—by sampling with replacement from
the original data.

2. For b; = 1to By:
(a) Select k, candidate blocks from the K blocks with selection probabilities proportional to

the importance measure /,’s obtained in Step 2. Denote E: *C{1,2,..., K} as the index set

of selected blocks of the b;-th bootstrap sample and H; ? as the corresponding index set of
selected covariates.
(b) Apply Lasso to the bootstrap sample and generate the estimate by minimizing

2
n
b b
dSlpr—a= Y Bxi| +2 ) 18
=1 jeHZb3 jsH: 3
Here we use the superscript “b;” to denote the b;-th bootstrap sample. Set the estimate for
B;=0forje(l,..., p}\HZb’. Denote the resulted estimate as ﬁ;b’).
3. Conduct stability-based selection. Specifically, set B ;=0if B3‘1 Zf’_l I (ﬁ;b’)
=
J=lionop B b
4. For j=1,..., p,if B; # 0 from Step 3, calculate the final estimate as §; = B;l Do ﬂj(. 2
=

#0) < m; for
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3.3 Bootstrap penalization for data with a large p and a large n

When both the number of covariates and sample size are large, the methods developed in the previous
two sections can be naturally “combined” for analysis. The proposed method consists of the following
steps.

1. Generate S bootstrap samples, each with size m(<< n), by sampling without replacement from
the original data. Denote the subject index of the s-th bootstrap sample as /.
2. Fors=1to S:
(a) Apply the block bootstrap penalization method developed in Section 3.1 to the s-th boot-

strap sample, and obtain the estimate as [9(:).
(b) Compute the prediction mean squared error as

- 2 ~ 2
PMSE* = gy — &9 = Xnp)B ) Wiy — 89 = X )B /N

3. Conduct stability-based selection. Specifically, set ﬁ ;= 0if N Zil I (ﬁ;’) #0) <msfor j=
1,..., p. my is chosen using a BIC-type criterion as previously described.

4. If ﬁj # 0 from the previous step, then calculate the final estimate as 3]- = %Z;q:l w’ﬁj(.’).
max(4 /PMSE‘;—W,O)
f:lm(M—‘/W.o

Yau ))T(y(,\,) = Yay)/) \ L] is the prediction mean squared error of the null model without
covariates. :

The weight w* is computed as w* = , where PMSE§ = (yp\r) —



