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Support Vector Machines

Here we approach the two-class classification problem in a
direct way:

We try and find a plane that separates the classes in
feafure Space maximal margin classifer

If we cannot, we get creative in two ways:
support vector classifier

e We soften what we mean by “separates”, and

e We enrich and enlarge the feature space so that separation
. . support vector machine
is possible.

—A%IBMximal margin classifier, support vectro classifier, support vector machine Z#755 SVM
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What is a Hyperplane?

A hyperplane in p dimensions is a flat affine subspace of
dimension p — 1.

In general the equation for a hyperplane has the form

Bo+ B1 X1+ BeXo+ ...+ BpXp =0

bO+b1X1+b2X2=0  (X1,X2)
In p = 2 dimensions a hyperplane is a line.  P=3?
If By = 0, the hyperplane goes through the origin,

otherwise not.
aE

The vector 8 = (B1, B2, -+, Bp) is called the normal vector
— it points in a direction orthogonal to the surface of a
hyperplane.

V]








Kuangnan Fang
法向量


Xz

10

-2

Hyperplane in 2 Dimensions
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Hyperplane divid p-dimensional space into two halves

Now, suppose that X does not satisfy (9.2); rather,
Bo + B1 X1+ BoXo 4 ... 4 B Xp > 0 (9.2)

Then this tells us that X lies to one side of the hyperplane. On
the other hand, if

Bo+ 1 X1+ e Xo+ ...+ Bp X, <0 (9.4)

then X lies on the other side of the hyperplane. So we can
think of the hyperplane as dividing p-dimensional space into
two halves. One can easily determine on which side of the
hyperplane a point lies by simply calculating the sign of the left
hand side of (9.2). A hyperplane in two-dimensional space is
shown in Figure 9.1.



A hyperplane in two-dimensional space

FIGURE 9.1. The hyperplane 1 + 2X1 + 3X2 = 0 is shown. The blue region is
the set of points for which 1+ 2X1 +3X2 > 0, and the purple region is the set of
points for which 1+ 2X1 + 3X2 < 0.



Classification Using a Separating Hyperplane

Now suppose that we have a n x p data matrix X that consists
of n training observations in p -dimensional space,

T11 Tnl
T = : e Ty = : (9.5)

xlp CCnp

and that these observations fall into two classes — that is,

Y1, ,Yn € {—1,1} where -1 represents one class and 1 the
other class. We also have a test observation, a p-vector of
observed features z* = (z7, - - ,IL‘;)T. Our goal is to develop a
classifier based on the training data that will correctly classify
the test observation using its feature measurements.



magnitude of f(x«):
(1).f0x+) BORT, HHLL

: RUSE
Separating Hyperplanes ) B s
RUREE

BigLtEXLS
Z T hyperplane, , |
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«

o If f(X) =00+ X1+ -+ BpX,, then f(X) > 0 for points on
one side of the hyperplane, and f(X) < 0 for points on the other.

e If we code the colored points as Y; = +1 for blue, say, and
Y; = —1 for mauve, then if Y; - f(X;) > 0 for all 4, f(X) =0

defines a Sepa"ating hypm'plane. test: f(xx) = BO+B1x+1+B2x+2+. . .+Bpx=p

prediciton: a test observation is assigned a class depending on which side of the hyperplane it is Iocated.4 /21
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Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the
biggest gap or margin between the two classes.

Constrained optimization problem

maximize M
BosB1,--,Bp

P
subject to Z ,Bf =1, m—#
j=1
Yi(Bo + Brzin + .. + Bpip) = M
forall i=1,...,N.

SEFRE, RZyi(b0+..+bpxip)>=0BN7], M>0ZRE ™4

Margin? 78 R B8 T E RITHIIEE
Maximal Margin hyperplane: £13RFFHIBTE
Maximal Margin classifier:&F maximal margin hyperplanefJ 43

Support Vector? B4 EHI=, SN 42 p4Eivector, Fisksupporti3FE, S4B, SHTBIFENINE!
B E R T > isupport vector, IR Efh T % |
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Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the
biggest gap or margin between the two classes.

Constrained optimization problem

maximize M
Bo,B1s--,Bp

P
subject to Zﬁf =1,

j=1
vectors
; yi(Bo + Brxin + ... + Bpwip) = M
forall i=1,...,N.

-1 0 1 2 3
Xy

This can be rephrased as a convex quadratic program, and
solved efficiently. The function svm() in package e1071 solves
this problem efficiently
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Maximal margin classifier

e since f'x+ By =0 and ¢ (ﬁTX + Bo) = 0 define the same
plane, we have the freedom to choose the normalization of
w

¢ Choose normalization such that f7x, + 8y = +1 and
BTx_+ fy = —1 for the positive and negative support
vectors respectively

® Then the margin is given by

B Fex) 2
TR A 1/ I 1T



Maximal margin classifier

linearly separable data +
°

wix+b=1
wix+b=0

wix+b=-1 : °



Maximal margin classifier

® Learning the SVM can be formulated as an optimization:

2
max —— subject to 87 z;+ 5o

g 18l

® Or equivalently
mgn |1 3]|% subject to y; (ﬁ—rxi + ﬁo) >1fori=1...N

® This is a quadratic optimization problem subject to linear
constraints and there is a unique minimum



Constrained Optimization

Constrained optimization has the form

min  Q(6)
subject to 0 €S C RY
Q(0): objective function
S: feasible set

Convex optimization: both objective function and feasible
set are convex.



Lagrange Multiplier

Consider equality constraint

min Q(0)
subject to R(A) =0

S ={0:R(#) =0} is a(d — 1) dimensional surface in R?.
For every 6 such that R(f) = 0, \7R(6) is orthogonal to the
surface.

If 6* is a local minimum, then 7@ is orthogonal to the
surface at 6*.



Lagrange Multiplier

Conclusion: at a local minimum, there exists A € R such
that
VQ (0*) = AVR(0")

This leads us to introduce the Lagrangian
L0, ) = Q(6) — AR(0)

where A is the Lagrange multiplier.

We have argued that a local minimum corresponds to a
stationary point of the Lagrangian.

Furthermore, we can reverse our logic to deduce that a
stationary point of the Lagrangian is a local optimum.



Lagrange Multiplier

Inequality constraint
Now consider(the primal problem)

min  Q(6)
subject to  R(6) >0

Suppose 6* is a local minimum. There are two cases:
¢ Inactive constraint: R(6*) > 0 = VQ(0*) = 0 = stationary
point of L(,\) with A =0
e Active constraint: R(6*) = 0 = same as equality constraint
except we require A > 0.



Lagrange Multiplier

In either case, we have X - R(6*) = 0. Therefore, a local
minimum satisfies (Karush -Kuhn-Tucker conditions)

VL (0

) = VQ(G*) AVR (6%) =0
R(07)
pY

| V

® Often the KKT conditions may be used to transform the
primal problem to an equivalent dual problem, where the
variables being optimized are the Lagrange multipliers.



Quadratic Programming

Equivalently
1
min—
min 5]
subject to y; (ﬁo —I-SL‘ZTﬁ) >1i=1,...,n

The Lagrange primal is

n

Ly= %Hﬁ“z > [yi (ﬁo +JJ,B) — 1}

i=1

where «a; > 0.
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Quadratic Programming

® Dual problem:

max min L,
o Bo,B

® Firstly,

min L
Bo,B P

® Setting the derivatives to zero, we get
a n
876 1B = ; QiYil

9 n
8760:0:2&,‘%

i=1



Quadratic Programming

Substituting into the Lagrange primal, we obtain the Lagrange

dual
Lp = Zaz -3 Z Z azaz’ylyz’x €Tt

i=114=1

We maximize Lp subject to

and
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Quadratic Programming

¢ Let o = (af,...,a}) is the solution of dual problem, then

we can get the solution of the primal problem by
n
pr = Z ;Y
i=1

n
By =y; — > ofyi(wi - x5), Yoy >0
=1

Show the above solution. KKT condition

Is the solution By unique?
Hyperplane: 85 + 38X =0
e Classification dexision function: f(z) = sign(8§ + *X)



Quadratic Programming

® Minimize L, with respect to primal variables 3,3
® Maximize Lp with respect to dual variables a;

e Maximizing the dual is often a simpler convex QP than the
primal.



Support Vectors

The Karush-Kuhn-Tucker conditions include
A~ 3 T 5 _
&; [yi (50-1-%- 5) —1} =0

This imply
o If y; f(x;) > 1, then &; = 0, the point outside the margin
boundary.
e [f &; > 0, then yzf(:z:z) =1, or in other words,
Bo + Bx; = £1,x; is on the boundary of the ”slab”. support
vectors.

® The solution 3 =Y, a;yx; is defined in terms of a linear
combination of the support points.



Example
Example: 1 = (3,3), 11 = 1, x2 = (4,3), y2 = 1, z3 = (1,1), y3 =

x=(33) x=(4,3)

xa=(1,1)

® Primal problem
381 +382+00>1
mm (ﬂl + ,32) subject to 481 +3B2+ Bo > 1
—B1—B2—Po=>1
Solution: 31 = B2 = % Bo = —1.
Hyperplane: %Xl + %Xg —2=0.
® Dual problem 7



Non-separable Data

The data on the left are
not separable by a linear
boundary.

This is often the case,
unless NV < p.

overlap

M3% A2 maximal margin classifier /E471?
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Noisy Data

Xo
;
|
X.
;

Xi X1

Sometimes the data are separable, but noisy. This can lead to a
poor solution for the maximal-margin classifier.



Noisy Data

Xo
]
1
[ ]
Xo
;

Xl Xl

Sometimes the data are separable, but noisy. This can lead to a
poor solution for the maximal-margin classifier.

HFI SRS TEE, B EHoverliting  AEREERHTL, AFNSASE, BENEMNSHEES, MAEMSER
The support vector classifier maximizes a soft margin.

soft margin classifier
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X,

Support Vector Classifier

. 10 < < 10

7
Fe-e S~ support
B R o - Sl vectors:observations
el AN that lie directly on
| support vectors 5 &= o 5 = the margin, or on the
w2 R wrong side of margin

n ~ “wrong side af hyperplane
1 9 \];p Py plane R support vector 21,

T5~-__ wrong side of margin o J3 S REE A SR

4 Fceaa a5 Ty
8 6 To-- T BN
T T T T T T T T T T T T T T
-05 00 05 10 15 20 25 -05 00 05 10 15 20 25
Xy X1

P
maximize M subject to Z 6]2 =1,

Bo:B1,---,Bp €15--5€n =

Yi(Bo + Brzi1 + Pazio + ... + Bpzip) > M(1 —¢€;),

n
budge
slack variables €; 2 0’ E €; S C’7 tunning parameter choosing by CV approach
. C=0, \epsilon =0, maximal margin hyperplane
1=1 \epsilon >0, on the wrong margin

RET@ICTOHE, Eh\epsion>174 \epsilon >1, on the wrong hyperplane 8 /21



















C' is a regularization parameter




Computing the Support Vector Classifier

we can drop the norm constraint on 3, define M = Hlll the
equivalent form

=

yi (eI B+ Bo) > 1—&,Vi (1)

. 2 :
min ||5]|*  subject to { £&>0,5¢ < constant

® This is the usual way the support vector classifier is defined
for the non-separable case.

® points well inside their class boundary do not play a big
role in shaping the boundary.



Support Vector Classifier




Computing the Support Vector Classifier

N
1 2
min — +C i
5,50 1141 ;f (12.8)
subject to & > 0,y; (z] B+ Bo) > 1 — &Vi

where the “cost” parameter C' replaces the constant in (12.7);
the separable case corresponds to C = oo.
The Lagrange (primal) function is

N N

b= JIAHC Y 6o s 6+ ) - (- 8]-3
i=1 =1

“(12.9)



Computing the Support Vector Classifier
Which we minimize w.r.t 8, 5y and &;. Setting the respective
derivatives to zero, we get

N
p= Z QY (12.10)
=1
N
0=> aiy (12.11)
=1
a; = C — g, Vi (12.12)

as well as the positivity constraints oy, i, & > 0,Vi. By
substituting (12.10)-(12.12) into (12.9), we obtain the
Lagrangian (Wolfe) dual objective function

N N N
19 :Za._lzzaa. ar L (12.13)
D % 2 QG Y Y Ty Tyt .
=1

i=14'=1



Computing the Support Vector Classifier

We can get the dual problem of (12.8)
0 <a; <C,ViWhy

max Lp subject to { Zf\il ot = 0
Karush-Kuhn-Tucker conditions include the constraints
ai [yi («f B+ Bo) — (1= &)] =0 (12.14)
pi& =0 (12.15)
yi (# B+ Bo) —(1—&) >0 (12.16)

Together these equations (12.10)-(12.16) uniquely
characterize the solution to the primal and dual problem.
From (12.10) we see that the solution for 5 has the form

N
p= Zdlyzxz (12.17)
i=1



Computing the Support Vector Classifier

For &; = 0, then él = 0, points are outside the margin.
For &; > 0, which are called the support vectors.

For 0 < &; < C, then fl = 0 why, means these support
points lie on the edge of the margin;

Fordi:CandO<éi<1

Fordi:Candéizl

Forézi:Candéi>1

From (12.14) we can see that any of these margin points

(0 < &y, &= 0) can de used to solve for [y, and we typically
use an average of all the solutions for numerical stability.

Given the solution Bo and B , the decision function is

G(z) = sign[f(z)] = sign [xTB + BAO} (12.18)



The SVM as a Penalization Method

® The standard SVM:

min 3161 +02@

subject to&; > 0,y; (Bo + =, ﬁ) >1-¢&,i=1,2,---,n (1)

where & = (£1,&2, -, &,) are the slack variables and C' > 0 is a
constant.

® The constraint of (1) can be written as
57.2[1_y1(ﬁ0+a:;r/6)]+7 i:1a27"'an
® Then Objective function:

S8+ 6 > SIBI2+ O3 [1-wi (Bo + 2 B)],
i=1 =1

If and only if & = [1 —Y; (50 + w;rﬁ)]+ , the above inequality
takes 7=".



The SVM as a Penalization Method

® Then the solution of 5y, 3 in (1) is the same as the solution
of the following optimization problem:

win 53] +0§ 1w (po+2lB)],

® Let A =1/C, The above optimization problem is equivalent
to

n
A
min 1-— ( + ) )} + — 2 2
mind [1-w (lrals)] +518° @
® This has the form ”loss + penalty ”, which is a familiar
paradigm in function estimation.

Exercise:Prove It
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Implication of the Hinge Loss

Consider the expectation of the loss
function:

E((yf)|z) = £(f) Pr(y = 1|z)

+(=f) Pr(y = —1|z) °
Minimize expected loss when £(.) is
hinge loss or 0-1 loss, obtain:

f(z) = sign (Pr(y —1|z) — %) -

Loss

— Hinge Loss
— 0-1Loss
-~ Perceptron Loss

0-1 loss is the true loss function in
binary classification.

3
But the following optimization problem is difficult.

min — Iy fiz:
; n; [yi f (2:)<0]

T T T
2 -1

Since the solution to minimize the expected loss is the same, the hinge

loss is also called the surrogate loss function.

Compared with the perceptron loss, the hinge loss is not only classified
correctly, but also the loss is only 0 when the confidence is high enough,
that is, the hinge loss has higher requirements for learning.




Compare with other commonly used loss functions

SVM Hinge Loss: [1 —yf(z)]+

Logistic Regression Loss:
log[1 4 e ¥/ (®@)]

Squared Error:

ly— f(@)]* =1 —yf(x)?

Huberized Hinge Loss:

U'ﬁ
Uyf) = { (1 —yf)?/(26),
1—t—5/2,

Loss
15

yf>1
1-d<yf<1
yf <1-0.

where § > 0 is a pre-specfied constant.

Examination of the hinge loss function
shows that it is reasonable for two-class

classification, when compared to Logistic loss and Squared error.

25 30

20

10

— Logistic regression Loss
— Hinge Loss (SVM)

—— Squared error

—— Huberized hinge loss (6=2)

e Logistic loss has similar tails as the SVM loss, but there is never zero

penalty for points well inside their margin.

e Squared error gives a quadratic penalty, and points well inside their own

margin have a strong influence on the model as well.

Rosset and Zhu (2007) proposed a Huberized hinge loss, which is very
similar to hinge loss in shape.




Hinge Loss and Huberized Loss

As the § decreases, the hubrized loss

gets closer to the hinge loss. In fact, - ——
when & — 0, the limit of hubrized BN . Fuberized 02
loss is the hinge loss. IR " Hbated 00
Unlike the hinge loss, the huberized , ~ A

loss function is differentiable every- 7 o

where. ~

It is easy to prove that the huberiz-

ed loss is satisfied —————

argmin E[{(yf)|z] = 2Pr(y = 1|z)—1 = E(yl|x) §
f
E(y|z) > 0 < sign[Pr(y = 1|z) — %] > 0.
Rosset and Ji Zhu(2007): In the model with logistic loss, huberized

loss, and square hinge loss with ¢1-penalty, the impact of outliers on
the received huberized loss model is minimal.



Support Vector versus Logistic Regression?

With f(X) = fo+ /1 X1+ ... + BpX, can rephrase
support-vector classifier optimization as

P
mlmmlze Z max l/zf(%)] + A Z BJQ
j=1

B0;B15-+-,8p

* Dgetcnegressontoss|  T'his has the form

loss plus penalty.

The loss is known as the
hinge loss.

Very similar to “loss” in
logistic regression (negative
log-likelihood).

Loss
4
|

Yi(Bo + Brxin + ..+ Byaiy)
20/2



Which to use: SVM or Logistic Regression

When classes are (nearly) separable, SVM does better than
LR. So does LDA.

When not, LR (with ridge penalty) and SVM very similar.
If you wish to estimate probabilities, LR is the choice.

For nonlinear boundaries, kernel SVMs are popular. Can
use kernels with LR and LDA as well, but computations
are more expensive.



[1-SVM

The penalty of SVM is called the ridge penalty. It is well known
that this shrinkage has the effect of controlling the variances of 3;

Hence possibly improves the fitted models prediction accuracy,
especially when there are many highly correlated features.

The SVM uses all variables in classification, which could be a
great disadvantage in high-dimensional classification.

Apply lasso penalty (I;-norm) to the SVM, Consider the
optimization problem(l;-SVM)

n

o1
iy ; (1= (Bo+=/B)], + Bl

® the [1-SVM is able to automatically discard irrelevant
features.

® In the presence of many noise variables, the {;-SVM has
signifi- cant advantages over the standard SVM.



[1-SVM

The optimization problem of [1-SVM is a linear program
with many constraints, and ecient algorithms can be
complex.

The solution paths can have many jumps, and show many
discontinuities. For this reason, some authors prefer to
replace the usual hinge loss with other smooth loss
function, such as square hinge loss, huberized hinge loss,
etc. (Zhu, Rosset, Hastie, 2004).

The number of variables selected by the [;-norm penalty is
upper bounded by the sample size n.

For highly correlated and relevant variables, the /;-norm
penalty tends to select only one or a few of them.



The hybrid huberized SVM(HHSVM)

Li Wang, Ji Zhu and Hui Zou(2007) apply the elasticnet
penalty to the SVM and propose the HHSVM:

n T )\2 9
B> ﬁ(yz<ﬁo+w 8)) +MlBl+ 21815 ()

Where the loss function is huberized hinge loss:

yf >1
f(yf){( yf)?/(26), 1-6<yf<1
L- yf 6/2, yf<1-96

and & > 0 is a pre-specified constant. The delfault choice
for § is 2 unless specified otherwise.

=



X

Linear boundary can fail

Sometime a linear bound-
ary simply won’t work,
no matter what value of

C.

The example on the left
is such a case.

What to do?

ATEZIEAELNE, SIA2RM, IRM, RRIF
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Feature Expansion

e Enlarge the space of features by including transformations;
e.g. X2, X3, X1Xo, X1X2,.... Hence go from a
p-dimensional space to a M > p dimensional space.

e Fit a support-vector classifier in the enlarged space.

e This results in non-linear decision boundaries in the
original space.



Feature Expansion

e Enlarge the space of features by including transformations;
e.g. X2, X3, X1Xo, X1X2,.... Hence go from a
p-dimensional space to a M > p dimensional space.

e Fit a support-vector classifier in the enlarged space.

e This results in non-linear decision boundaries in the
original space.

Example: Suppose we use (X1, X2, X7, X2, X1 X>) instead of
just (X1, X5). Then the decision boundary would be of the form

Bo + B X1+ BoXo + B3 X7 + BaX5 + B X1 X2 =0

This leads to nonlinear decision boundaries in the original space
(quadratic conic sections).



hyperplane divid p-dimensional space into two halves

we could instead fit a support vector classifier using 2p features
XlaX12aX27X227 e 7Xp7Xg
Then (9.12)-(9.15) would become

maximize M
B0,811,812--,8p1,8p2,€1,--,€n

p
subject to y; BO + Z lel‘ij + Z 5]'21,‘% > M (1 — Ei)

p
j=1 j=1

n P 2

ZQ‘SC, € >0, ZZ ?kz

i=1 j=1 k=1
(9.16)



Example:

spam {ElemStatLearn) Spam Detection
e data from 4601 emails sent to an individual (named George,
at HP labs, before 2000). Each is labeled as spam or email.
e goal: build a customized spam filter.

e input features: relative frequencies of 57 of the most
commonly occurring words and punctuation marks in these
email messages.

george you hp free ' edu remove
spam 0.00 2.26 0.02 052 0.51 0.01 0.28
email 1.27 127 090 0.07 0.11 0.29 0.01

Average percentage of words or characters in an email message equal
to the indicated word or character. We have chosen the words and

characters showing the largest difference between spam and email.

Decision tree; randomforest; boosting; linear SVM
Using measurement: sensitivity specificity ROC AUC

13 /29
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Decision tree; randomforest; boosting; linear SVM
Using measurement: sensitivity specificity ROC AUC

Kuangnan Fang
spam {ElemStatLearn}


Cubic Polynomials

Here we wuse a basis
expansion of cubic poly-
nomials

From 2 variables to 9

The support-vector clas-
sifier in the enlarged
space solves the problem
in the lower-dimensional
space

X
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Cubic Polynomials

Here we wuse a basis
expansion of cubic poly-
nomials

From 2 variables to 9

X,

The support-vector clas-
sifier in the enlarged
space solves the problem
in the lower-dimensional
space

Bo+L1X1+ B2 X+ B3 X2+ 84 X3+ 5 X1 Xo+B6 X3 +B87 X5+ X1 X5 +Bo X7 X2 =0

12/21



Nonlinearities and Kernels

e Polynomials (especially high-dimensional ones) get wild
rather fast.

e There is a more elegant and controlled way to introduce
nonlinearities in support-vector classifiers — through the
use of kernels.

e Before we discuss these, we must understand the role of
wmmner products in support-vector classifiers.



Inner products and support vectors

(@i, i) g TyjTy;  — inner product between vectors
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Inner products and support vectors

(@i, i) g TyjTy;  — inner product between vectors

e The linear support vector classifier can be represented as

f(x) = po+ Z ai{z,z;) — n parameters
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Inner products and support vectors

J;,,xl g ZijXyry  —— anner product between vectors

e The linear support vector classifier can be represented as

f(x) = Bo+ Z ai{z,z;) — n parameters

e To estimate the parameters aq, ..., a, and 8y, all we need
are the (g) inner products (z;, x;) between all pairs of
training observations.



Inner products and support vectors

(@i, i) g TyjTy;  — inner product between vectors

e The linear support vector classifier can be represented as

f(x) = Bo+ Z ai{z,z;) — n parameters

e To estimate the parameters aq, ..., a, and 8y, all we need
are the (g) inner products (z;, x;) between all pairs of
training observations.

It turns out that most of the &; can be zero:
=Bo+ Y (e, m)
€S
S is the support set of indices i such that &; > 0. [sce slide §]



Kernels and Support Vector Machines

e If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!



Kernels and Support Vector Machines

e If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

e Some special kernel functions can do this for us. E.g.
d
K(zj,zp)= |1+ Z:U”x”

computes the inner-products needed for d dimensional
polynomials — (pj;d) basis functions!



Kernels and Support Vector Machines

e If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

e Some special kernel functions can do this for us. E.g.
d
K(zj,zp)= |1+ Zx”x”

computes the inner-products needed for d dimensional
polynomials — (pj;d) basis functions!
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Kernels and Support Vector Machines

e If we can compute inner-products between observations, we
can fit a SV classifier. Can be quite abstract!

e Some special kernel functions can do this for us. E.g.
d
K(zj,zp)= |1+ Z:U”x”

computes the inner-products needed for d dimensional
polynomials — (pj;d) basis functions!
Try it forp =2 and d = 2.

e The solution has the form

BO“’ZOQ $-Tz

€S



X

Radial Kernel

(zij — zi5)°).
1

K(z;,xy) = exp(—y

J

p

fla) = Bo+ ) 6K (x,24)
€S

Implicit feature space;

very high dimensional.

Controls  variance by
squashing down most
| dimensions severely

16 /21



Example: Heart Data
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ROC curve is obtained by changing the threshold 0 to threshold
tin f(X) > t, and recording false positive and true positive
rates as t varies. Here we see ROC curves on training data.
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SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if
we have K > 2 classes?

OVA One versus All. Fit K different 2-class SVM

classifiers fk (z), k=1,...,K; each class versus
the rest. Classify z* to the class for which f(z*)
is largest.

OVO One versus One. Fit all (12{) pairwise classifiers
fre(x). Classify 2* to the class that wins the most
pairwise competitions.

Which to choose? If K is not too large, use OVO.



Support vector regression

In this section we show how SVMs can be adapted for
regression with a quantitative response, in ways that inherit
some of the properties of the SVM classifier. We first discuss
the linear regression model

f(2) =28 + By (12.35)

And then handle nonlinear generalizations. To estimate 3, we
consider minimization of

H (B, Bo) = Zv ;) + *HBHQ (12.36)



Support vector regression

0 if |r] < e

Ir| —¢,  otherwise (12.37)

v = {
This is an “e-insensitive” error measure, ignoring errors of size less than e
(left panel of Figure 12.8) There is a rough analogy with the support vector
classification setup, where points on the correct side of the decision
boundary and far away from it, are ignored in the optimization. In
regression, these “low error” points are the ones with small residuals. It is
interesting to contrast this with error measures used in robust regression in
statistics. The most popular, due to Huber (1964), has the form

r?/2 iflr] <e¢
Vi (r) = { cr| —c%/2, iflr| >c (12.38)

shown in the right panel of Figure 12.8. This function reduces from
quadratic to linear the contributions of observations with absolute residual
greater than a prechosen constant c¢. This makes the fitting less sensitive to
outliers. The support vector error measure (12.37) also has linear tails
(beyond €), but in addition it flattens the contributions of those cases with
small residuals.



Support vector regression
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FIGURE 12.8. The left panel shows the e-insensitive error function used by the
support vector regression machine. The right panel shows the error function used
in Huber’s robust regression (blue curve). Beyond |c|, the function changes from
quadratic to linear.



Support vector regression
As discussed in Section 12.3.3, this kernel property is not
unique to support vector machines. Suppose we consider

approximation of the regression function in terms of a set of
basis functions {h,,(z)}, m=1,2,--- , M:

To estimate S and 5y we minimize

N
HS o) = S Vi~ fe)+ 55 5 (1243)
=1

for some general error measure V'(r). For any choice of V/(r),
the solution f(z) = Zﬁmhm(az) + o has the form

Z% (x, ;) (12.44)



Support vector regression
with K (z,y) = SM_ hyn(2)him(y). Notice that this has the
same form as both the radial basis function expansion and a
regularization estimate, discussed in Chapters 5 and 6.
For concreteness, let’s work out the case V(r) = r2. Let H be
the N x M basis matrix with imth element h,(z;), and
suppose that M > N is large. For simplicity we assume that
Bo = 0, or that the constant is absorbed in h; see Exercise 12.3
for an alternative.
We estimate 5 by minimizing the penalized least squares
criterion

H(B) = (y —HB)" (y - HB) + A|8]* (12.45)
The solution is
y =Hp (12.46)
with 3 determined by

~H” (y —HB) + A3 =0 (12.47)



Support vector regression

From this it appears that we need to evaluate the M x M matrix of inner
products in the transformed space. However, we can premultiply by H to
give
R -1
Hj = (HHT + )\I) HH y (12.48)

The N x Nmatrix HH7T consists of inner products between pairs of
observations 4,4’; that is, the evaluation of an inner product kernel
{HH"}, ;s = K(x, 7). Tt is easy to show (12.44) directly in this case, that
the predicted values at an arbitrary = satisfy

f(x)

)T

= h(z)" B
= id-[((m x;) (12:49)

where & = (HHT + AI)"'y. As in the support vector machine, we need not
specify or evaluate the large set of functions h1(z), ha(z), -+ , hm(z). Only
the inner product kernel K (x;,x;/) need be evaluated, at the N training
points for each 4,4 and at points x for predictions there. Careful choice of
hm (such as the eigenfunctions of particular, easy-to-evaluate kernels K)
means, for example, that HH” can be computed at a cost of N?/2
evaluations of K, rather than the direct cost N?M.



