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Unsupervised Learning

Unsupervised vs Supervised Learning:

• Most of this course focuses on supervised learning methods
such as regression and classification.

• In that setting we observe both a set of features
X1, X2, . . . , Xp for each object, as well as a response or
outcome variable Y . The goal is then to predict Y using
X1, X2, . . . , Xp.

• Here we instead focus on unsupervised learning, we where
observe only the features X1, X2, . . . , Xp. We are not
interested in prediction, because we do not have an
associated response variable Y .
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The Goals of Unsupervised Learning

• The goal is to discover interesting things about the
measurements: is there an informative way to visualize the
data? Can we discover subgroups among the variables or
among the observations?

• We discuss two methods:
• principal components analysis, a tool used for data

visualization or data pre-processing before supervised
techniques are applied, and

• clustering, a broad class of methods for discovering
unknown subgroups in data.
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The Challenge of Unsupervised Learning

• Unsupervised learning is more subjective than supervised
learning, as there is no simple goal for the analysis, such as
prediction of a response.

• But techniques for unsupervised learning are of growing
importance in a number of fields:

• subgroups of breast cancer patients grouped by their gene
expression measurements,

• groups of shoppers characterized by their browsing and
purchase histories,

• movies grouped by the ratings assigned by movie viewers.
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Another advantage

• It is often easier to obtain unlabeled data — from a lab
instrument or a computer — than labeled data, which can
require human intervention.

• For example it is di�cult to automatically assess the
overall sentiment of a movie review: is it favorable or not?
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PCA vs Clustering

• PCA looks for a low-dimensional representation of the
observations that explains a good fraction of the variance.

• Clustering looks for homogeneous subgroups among the
observations.
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Principal Components Analysis

• PCA produces a low-dimensional representation of a
dataset. It finds a sequence of linear combinations of the
variables that have maximal variance, and are mutually
uncorrelated.

• Apart from producing derived variables for use in
supervised learning problems, PCA also serves as a tool for
data visualization.
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Principal Components Analysis: details

• The first principal component of a set of features
X1, X2, . . . , Xp is the normalized linear combination of the
features

Z1 = �11X1 + �21X2 + . . .+ �p1Xp

that has the largest variance. By normalized, we mean thatPp
j=1 �

2
j1 = 1.

• We refer to the elements �11, . . . ,�p1 as the loadings of the
first principal component; together, the loadings make up
the principal component loading vector,
�1 = (�11 �21 . . . �p1)T .

• We constrain the loadings so that their sum of squares is
equal to one, since otherwise setting these elements to be
arbitrarily large in absolute value could result in an
arbitrarily large variance.
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PCA: example
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The population size (pop) and ad spending (ad) for 100 di↵erent
cities are shown as purple circles. The green solid line indicates
the first principal component direction, and the blue dashed
line indicates the second principal component direction.
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Pictures of PCA: continued
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Plots of the first principal component scores zi1 versus pop and
ad. The relationships are strong.
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Pictures of PCA: continued
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Plots of the second principal component scores zi2 versus pop
and ad. The relationships are weak.
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Computation of Principal Components

• Suppose we have a n⇥ p data set X. Since we are only
interested in variance, we assume that each of the variables
in X has been centered to have mean zero (that is, the
column means of X are zero).

• We then look for the linear combination of the sample
feature values of the form

zi1 = �11xi1 + �21xi2 + . . .+ �p1xip (1)

for i = 1, . . . , n that has largest sample variance, subject to
the constraint that

Pp
j=1 �

2
j1 = 1.

• Since each of the xij has mean zero, then so does zi1 (for
any values of �j1). Hence the sample variance of the zi1
can be written as 1

n

Pn
i=1 z

2
i1.
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Computation: continued

• Plugging in (1) the first principal component loading vector
solves the optimization problem

maximize
�11,...,�p1

1

n

nX

i=1

0

@
pX

j=1

�j1xij

1

A
2

subject to
pX

j=1

�2
j1 = 1.

• This problem can be solved via a singular-value
decomposition of the matrix X, a standard technique in
linear algebra.

• We refer to Z1 as the first principal component, with
realized values z11, . . . , zn1
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Geometry of PCA

• The loading vector �1 with elements �11,�21, . . . ,�p1

defines a direction in feature space along which the data
vary the most.

• If we project the n data points x1, . . . , xn onto this
direction, the projected values are the principal component
scores z11, . . . , zn1 themselves.
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Further principal components

• The second principal component is the linear combination
of X1, . . . , Xp that has maximal variance among all linear
combinations that are uncorrelated with Z1.

• The second principal component scores z12, z22, . . . , zn2
take the form

zi2 = �12xi1 + �22xi2 + . . .+ �p2xip,

where �2 is the second principal component loading vector,
with elements �12,�22, . . . ,�p2.
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Further principal components: continued

• It turns out that constraining Z2 to be uncorrelated with
Z1 is equivalent to constraining the direction �2 to be
orthogonal (perpendicular) to the direction �1. And so on.

• The principal component directions �1, �2, �3, . . . are the
ordered sequence of right singular vectors of the matrix X,
and the variances of the components are 1

n times the
squares of the singular values. There are at most
min(n� 1, p) principal components.
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Illustration

• USAarrests data: For each of the fifty states in the United
States, the data set contains the number of arrests per
100, 000 residents for each of three crimes: Assault, Murder,
and Rape. We also record UrbanPop (the percent of the
population in each state living in urban areas).

• The principal component score vectors have length n = 50,
and the principal component loading vectors have length
p = 4.

• PCA was performed after standardizing each variable to
have mean zero and standard deviation one.
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USAarrests data: PCA plot
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Figure details

The first two principal components for the USArrests data.

• The blue state names represent the scores for the first two
principal components.

• The orange arrows indicate the first two principal
component loading vectors (with axes on the top and
right). For example, the loading for Rape on the first
component is 0.54, and its loading on the second principal
component 0.17 [the word Rape is centered at the point
(0.54, 0.17)].

• This figure is known as a biplot, because it displays both
the principal component scores and the principal
component loadings.
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PCA loadings

PC1 PC2
Murder 0.5358995 -0.4181809
Assault 0.5831836 -0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186
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Pictures of PCA: continued
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A subset of the advertising data. Left: The first principal
component, chosen to minimize the sum of the squared
perpendicular distances to each point, is shown in green. These
distances are represented using the black dashed line segments.
Right: The left-hand panel has been rotated so that the first
principal component lies on the x-axis.
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Another Interpretation of Principal Components
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PCA find the hyperplane closest to the observations

• The first principal component loading vector has a very
special property: it defines the line in p-dimensional space
that is closest to the n observations (using average squared
Euclidean distance as a measure of closeness)

• The notion of principal components as the dimensions that
are closest to the n observations extends beyond just the
first principal component.

• For instance, the first two principal components of a data
set span the plane that is closest to the n observations, in
terms of average squared Euclidean distance.
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Scaling of the variables matters

• If the variables are in di↵erent units, scaling each to have
standard deviation equal to one is recommended.

• If they are in the same units, you might or might not scale
the variables.
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Proportion Variance Explained

• To understand the strength of each component, we are
interested in knowing the proportion of variance explained
(PVE) by each one.

• The total variance present in a data set (assuming that the
variables have been centered to have mean zero) is defined
as

pX

j=1

Var(Xj) =
pX

j=1

1

n

nX

i=1

x2ij ,

and the variance explained by the mth principal
component is

Var(Zm) =
1

n

nX

i=1

z2im.

• It can be shown that
Pp

j=1Var(Xj) =
PM

m=1Var(Zm),
with M = min(n� 1, p).
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Proportion Variance Explained: continued

• Therefore, the PVE of the mth principal component is
given by the positive quantity between 0 and 1

Pn
i=1 z

2
imPp

j=1

Pn
i=1 x

2
ij

.

• The PVEs sum to one. We sometimes display the
cumulative PVEs.
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How many principal components should we use?

If we use principal components as a summary of our data, how
many components are su�cient?

• No simple answer to this question, as cross-validation is not
available for this purpose.

• Why not?

• When could we use cross-validation to select the number of
components?

• the “scree plot” on the previous slide can be used as a
guide: we look for an “elbow”.
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Application to Principal Components Regression
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PCR was applied to two simulated data sets. The black, green,
and purple lines correspond to squared bias, variance, and test
mean squared error, respectively. Left: Simulated data from
slide 32. Right: Simulated data from slide 39.
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Choosing the number of directions M

2 4 6 8 10

−
3
0
0

−
1
0
0

0
1
0
0

2
0
0

3
0
0

4
0
0

Number of Components

S
ta

n
d
a
rd

iz
e
d
 C

o
e
ff
ic

ie
n
ts

Income
Limit
Rating
Student

2 4 6 8 10

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

Number of Components
C

ro
ss

−
V

a
lid

a
tio

n
 M

S
E

Left: PCR standardized coe�cient estimates on the Credit

data set for di↵erent values of M . Right: The 10-fold cross
validation MSE obtained using PCR, as a function of M .
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Clustering

• Clustering refers to a very broad set of techniques for
finding subgroups, or clusters, in a data set.

• We seek a partition of the data into distinct groups so that
the observations within each group are quite similar to
each other,

• It make this concrete, we must define what it means for
two or more observations to be similar or di↵erent.

• Indeed, this is often a domain-specific consideration that
must be made based on knowledge of the data being
studied.
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Clustering for Market Segmentation

• Suppose we have access to a large number of measurements
(e.g. median household income, occupation, distance from
nearest urban area, and so forth) for a large number of
people.

• Our goal is to perform market segmentation by identifying
subgroups of people who might be more receptive to a
particular form of advertising, or more likely to purchase a
particular product.

• The task of performing market segmentation amounts to
clustering the people in the data set.

25 / 52



Clustering Methods



What is a natural grouping among these objects?



What is a natural grouping among these objects?



What is similarity?



Dissimilarities Based on Attributes
Most often we have measurements xij for i = 1, 2, . . . , N, on variables
j = 1, 2, . . . , p( also called attributes). since most of the popular
clustering algorithms take a dissimilarity matrix as their input, we
must first construct pairwise dissimilarities between the observations.
In the most common case, we define a dissimilarity dj (xij , xij)
between values of the jth attribute, and then define

D (xi, xi0) =
pX

j=1

dj (xij , xi0j)

as the dissimilarity between objects i and i0. By far the most common
choice is squared distance

dj (xij , xi
0j) = (xij � xi0j)

2

However, other choices are possible, and can lead to potentially
di↵erent results. For nonquantitative attributes, squared distance
may not be appropriate. In addition, it is sometimes desirable to
weight attributes di↵erently.



Dissimilarities Based on Attributes
Quantitative variables. Measurements of this type of variable or
attribute are represented by continuous real-valued numbers. It is
natural to define the ”error” between them as a monotone-increasing
function of their absolute di↵erence

d (xi, xi0) = l (|xi � xi0 |)

Besides squared-error loss (xi � xi0)
2 , a common choice is the identity

(absolute error). The former places more emphasis on larger
di↵erences than smaller ones. Alternatively, clustering can be based
on the correlation

⇢ (xi, xi0) =

P
j (xij � x̄i) (xi0j � x̄i0)qP

j (xij � x̄i)
2 P

j (xi0j � x̄i0)
2

(14.22)

with x̄i =
P

j xij/p. Note that this is averaged over variables, not
observations. If the observations are first standardized, thenP

j (xij� xi0j)
2 / 2 (1� ⇢ (xi, xi0)) . Hence clustering based on

correlation (similarity) is equivalent to that based on squared distance
(dissimilarity).



Dissimilarities Based on Attributes

Ordinal variables . The values of this type of variable are often
represented as contiguous integers, and the realizable values are
considered to be an ordered set. Examples are academic grades
(A,B,C,D,F), degree of preference (can’t stand, dislike, OK,
like, terrific). Rank data are a special kind of ordinal data.
Error measures for ordinal variables are generally defined by
replacing their M original values with

i� 1/2

M
, i = 1, . . . ,M (14.23)

in the prescribed order of their original values. They are then
treated as quantitative variables on this scale.



Combinatorial Algorithms

The most popular clustering algorithms directly assign each
observation to a group or cluster without regard to a probability
model describing the data. Each observation is uniquely labeled by an
integer i 2 {1, · · · , N}. A prespecified number of clusters K < N is
postulated, and each one is labeled by an integer k 2 {1, . . . ,K}. Each
observation is assigned to one and only one cluster. These assignments
can be characterized by a manyto-one mapping, or encoder k = C(i),
that assigns the ith observation to the kth cluster. One seeks the
particular encoder C⇤(i) that achieves the required goal (details
below), based on the dissimilarities d (xi, xi0) between every pair of
observations. These are specified by the user as described above.
Generally, the encoder C(i) is explicitly delineated by giving its value
(cluster assignment) for each observation i. Thus, the “parameter” of
the procedure are the individual cluster assignments for each of the N
observations. These are adjusted so as to minimize a “loss” function
that characterizes the degree to which the clustering goal is not met.



Combinatorial Algorithms
One approach is to directly specify a mathematical loss function and
attempt to minimize it through some combinatorial optimization
algorithm. since the goal is to assign close points to the same cluster,
a natural loss (or “energ”) function would be

W (C) =
1

2

KX

k=1

X

C(i)=k

X

C(i0)=k

d (xi, xi0) (14.28)

This criterion characterizes the extent to which observations assigned
to the same cluster tend to be close to one another. It is sometimes
referred to as the “within cluste” point scatter since

T =
1

2

NX

i=1

NX

i0=1

dii0 =
1

2

KX

k=1

X

C(i)=k

0

@
X

C(i0)=k

dii0 +
X

C(i0) 6=k

dii0

1

A

or
T = W (C) +B(C)



Combinatorial Algorithms
where dii0 = d (xi, xi0) . Here T is the total point scatter, which is a
constant given the data, independent of cluster assignment. The quantity

B(C) =
1
2

KX

k=1

X

C(i)=k

X

C(i0) 6=k

dii0 (14.29)

is the between-cluster point scatter. This will tend to be large when
observations assigned to di↵erent clusters are far apart. Thus one has

W (C) = T �B(C)

and minimizing W (C) is equivalent to maximizing B(C).
Cluster analysis by combinatorial optimization is straightforward in
principle. One simply minimizes W or equivalently maximizes B over all
possible assignments of the N data points to K clusters. Unfortunately,
such optimization by complete enumeration is feasible only for very small
data sets. The number of distinct assignments is (Jain and Dubes, 1988 )

S(N,K) =
1
K!

KX

k=1

(�1)K�k

✓
K
k

◆
kN (14.30)



Combinatorial Algorithms

For example, S(10, 4) = 34, 105 which is quite feasible. But,
S(N,K) grows very rapidly with increasing values of its
arguments. Already S(19, 4) ' 1010, and most clustering
problems involve much larger data sets than N = 19. For this
reason, practical clustering algorithms are able to examine only
a very small fraction of all possible encoders k = C(i). The goal
is to identify a small subset that is likely to contain the optimal
one, or at least a good suboptimal partition.



Details of K-means clustering

Let C1, . . . , CK denote sets containing the indices of the
observations in each cluster. These sets satisfy two properties:

1. C1 [ C2 [ . . . [ CK = {1, . . . , n}. In other words, each
observation belongs to at least one of the K clusters.

2. Ck \ Ck0 = ; for all k 6= k0. In other words, the clusters are
non-overlapping: no observation belongs to more than one
cluster.

For instance, if the ith observation is in the kth cluster, then
i 2 Ck.
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Details of K-means clustering: continued

• The idea behind K-means clustering is that a good

clustering is one for which the within-cluster variation is as
small as possible.

• The within-cluster variation for cluster Ck is a measure
WCV(Ck) of the amount by which the observations within
a cluster di↵er from each other.

• Hence we want to solve the problem

minimize
C1,...,CK

(
KX

k=1

WCV(Ck)

)
. (2)

• In words, this formula says that we want to partition the
observations into K clusters such that the total
within-cluster variation, summed over all K clusters, is as
small as possible.
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How to define within-cluster variation?

• Typically we use Euclidean distance

WCV(Ck) =
1

|Ck|
X

i,i02Ck

pX

j=1

(xij � xi0j)
2, (3)

where |Ck| denotes the number of observations in the kth
cluster.

• Combining (2) and (3) gives the optimization problem that
defines K-means clustering,

minimize
C1,...,CK

8
<

:

KX

k=1

1

|Ck|
X

i,i02Ck

pX

j=1

(xij � xi0j)
2

9
=

; . (4)
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K-Means Clustering Algorithm

1. Randomly assign a number, from 1 to K, to each of the
observations. These serve as initial cluster assignments for
the observations.

2. Iterate until the cluster assignments stop changing:
2.1 For each of the K clusters, compute the cluster centroid.

The kth cluster centroid is the vector of the p feature means
for the observations in the kth cluster.

2.2 Assign each observation to the cluster whose centroid is
closest (where closest is defined using Euclidean distance).
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Properties of the Algorithm

• This algorithm is guaranteed to decrease the value of the
objective (4) at each step. Why?

Note that

1

|Ck|
X

i,i02Ck

pX

j=1

(xij � xi0j)
2 = 2

X

i2Ck

pX

j=1

(xij � x̄kj)
2,

where x̄kj =
1

|Ck|
P

i2Ck
xij is the mean for feature j in

cluster Ck.

• however it is not guaranteed to give the global minimum.
Why not?
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Example

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results
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Example: di↵erent starting values

320.9 235.8 235.8

235.8 235.8 310.9
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Weakness of K-means

• K-means algorithm is appropriate when the dissimilarity
measure is taken to be squared Euclidean distance. This
requires all of the variables to be of the quantitative type.

• For categorical data, K -mode - the centroid is represented
by most frequent values.

• The user needs to specify K.

• The algorithm is local optimum, isn’t global optimum. It is
sensitive to initical seeds.

• The algorithm is sensitive to outliers.



K-medoids



K-medoids
Solving (14.32) for each provisional cluster k requires an
amount of computation proportional to the number of
observations assigned to it, whereas for solving (14.35) the
computation increases to O

�
N

2
k

�
. Given a set of cluster

“centers” {i1, . . . , iK} , obtaining the new assignments

C(i) = argmin
1kK

dii⇤k
(14.37)

requires computation proportional to K ·N as before. Thus, K
-medoids is far more computationally intensive than K -means.
Alternating between (14.35) and (14.37) represents a particular
heuristic search strategy for trying to solve

min
C,{ik}K1

KX

k=1

X

C(i)=k

diik . (14.38)



Choosing K
• Choosing K is a nagging problem in cluster analysis.
• Sometimes, the problem determines K. For example,
clustering customers for K group in a business.

• Usually, we seek the natural clustering, but what does this
mean?

• Plot the objective function VS K. Elbow finding.



Hierarchical Clustering

• K-means clustering requires us to pre-specify the number
of clusters K. This can be a disadvantage (later we discuss
strategies for choosing K)

• Hierarchical clustering is an alternative approach which
does not require that we commit to a particular choice of
K.

• In this section, we describe bottom-up or agglomerative

clustering. This is the most common type of hierarchical
clustering, and refers to the fact that a dendrogram is built
starting from the leaves and combining clusters up to the
trunk.
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Hierarchical Clustering: the idea

Builds a hierarchy in a “bottom-up” fashion...

A B

C

D

E
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Hierarchical Clustering Algorithm

The approach in words:
• Start with each point in its own cluster.
• Identify the closest two clusters and merge them.
• Repeat.
• Ends when all points are in a single cluster.

A B
C

D
E

0
1

2
3

4

Dendrogram

D E B A C

39 / 52



Hierarchical Clustering Algorithm

The approach in words:
• Start with each point in its own cluster.
• Identify the closest two clusters and merge them.
• Repeat.
• Ends when all points are in a single cluster.

A B
C

D
E

0
1

2
3

4

Dendrogram

D E B A C

39 / 52



Types of Linkage

Linkage Description

Complete

Maximal inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the largest of
these dissimilarities.

Single

Minimal inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the smallest of
these dissimilarities.

Average

Mean inter-cluster dissimilarity. Compute all pairwise
dissimilarities between the observations in cluster A and
the observations in cluster B, and record the average of
these dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Cen-
troid linkage can result in undesirable inversions.
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An Example

−6 −4 −2 0 2

−
2

0
2

4

X1

X
2

45 observations generated in 2-dimensional space. In reality
there are three distinct classes, shown in separate colors.
However, we will treat these class labels as unknown and will
seek to cluster the observations in order to discover the classes
from the data.
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Application of hierarchical clustering
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Details of previous figure

• Left: Dendrogram obtained from hierarchically clustering
the data from previous slide, with complete linkage and
Euclidean distance.

• Center: The dendrogram from the left-hand panel, cut at a
height of 9 (indicated by the dashed line). This cut results
in two distinct clusters, shown in di↵erent colors.

• Right: The dendrogram from the left-hand panel, now cut
at a height of 5. This cut results in three distinct clusters,
shown in di↵erent colors. Note that the colors were not
used in clustering, but are simply used for display purposes
in this figure
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Another Example
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• An illustration of how to properly interpret a dendrogram with
nine observations in two-dimensional space. The raw data on the
right was used to generate the dendrogram on the left.

• Observations 5 and 7 are quite similar to each other, as are
observations 1 and 6.

• However, observation 9 is no more similar to observation 2 than
it is to observations 8, 5, and 7, even though observations 9 and 2
are close together in terms of horizontal distance.

• This is because observations 2, 8, 5, and 7 all fuse with
observation 9 at the same height, approximately 1.8.
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Merges in previous example
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Choice of Dissimilarity Measure

• So far have used Euclidean distance.
• An alternative is correlation-based distance which considers
two observations to be similar if their features are highly
correlated.

• This is an unusual use of correlation, which is normally
computed between variables; here it is computed between
the observation profiles for each pair of observations.
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Scaling of the variables matters
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Practical issues

• Should the observations or features first be standardized in
some way? For instance, maybe the variables should be
centered to have mean zero and scaled to have standard
deviation one.

• In the case of hierarchical clustering,
• What dissimilarity measure should be used?
• What type of linkage should be used?

• How many clusters to choose? (in both K-means or
hierarchical clustering). Di�cult problem. No agreed-upon
method. See Elements of Statistical Learning, chapter 13
for more details.
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Example: breast cancer microarray study

• “Repeated observation of breast tumor subtypes in
independent gene expression data sets;” Sorlie at el, PNAS
2003

• Average linkage, correlation metric

• Clustered samples using 500 intrinsic genes: each woman
was measured before and after chemotherapy. Intrinsic
genes have smallest within/between variation.
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West et al. data sets (Table 4). We note that prediction accuracies
reported above are somewhat optimistic, as some of the genes
used as predictors were used to define the test set groups in the
first place.

Tumor Subtypes Are Associated with Significant Difference in Clinical
Outcome. In our previous work, the expression-based tumor sub-
types were associated with a significant difference in overall survival
as well as disease-free survival for the patients suffering from locally
advanced breast cancer and belonging to the same treatment
protocol (6). To investigate whether these subtypes were also
associated with a significant difference in outcome in other patient
cohorts, we performed a univariate Kaplan–Meier analysis with
time to development of distant metastasis as a variable in the data
set comprising the 97 sporadic tumors taken from van’t Veer et al.

As shown in Fig. 5, the probability of remaining disease-free was
significantly different between the subtypes; patients with luminal
A type tumors lived considerably longer before they developed
metastatic disease, whereas the basal and ERBB2! groups showed
much shorter disease-free time intervals. Although the method-
ological differences prevent a definitive interpretation, it is notable
that the order of severity of clinical outcome associated with the
several subtypes is similar in the two dissimilar cohorts. We could
not carry out a similar analysis in the West et al. data because the
necessary follow-up data were not provided.

Discussion
Breast Tumor Subtypes Represent Distinct Biological Entities. Gene
expression studies have made it clear that there is considerable
diversity among breast tumors, both biologically and clinically (5, 6,

Fig. 1. Hierarchical clustering of 115 tumor tissues and 7 nonmalignant tissues using the ‘‘intrinsic’’ gene set. (A) A scaled-down representation of the entire cluster
of 534 genes and 122 tissue samples based on similarities in gene expression. (B) Experimental dendrogram showing the clustering of the tumors into five subgroups.
Branches corresponding to tumors with low correlation to any subtype are shown in gray. (C) Gene cluster showing the ERBB2 oncogene and other coexpressed genes.
(D) Gene cluster associated with luminal subtype B. (E) Gene cluster associated with the basal subtype. (F) A gene cluster relevant for the normal breast-like group. (G)
Cluster of genes including the estrogen receptor (ESR1) highly expressed in luminal subtype A tumors. Scale bar represents fold change for any given gene relative to
the median level of expression across all samples. (See also Fig. 6.)

8420 ! www.pnas.org"cgi"doi"10.1073"pnas.0932692100 Sørlie et al.
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Biclustering

Two types of traditional clustering methods

• Clustering samples based on all variables

• Clustering variables based on all samples

The underlying assumption

• All variables may give contribution to the classification of
samples

• But there exist one problem. If only a fraction of all samples
may perform similarly in a fraction of all variables?



Definition of Biclustering

In many reality datasets, we may face the problems above. Thus,
we introduce Biclustering to deal with such problems.

• Biclustering is a method to cluster samples and variables
simultaneously and we can get a cluster corresponding to
some samples and some variables.

• This method extracts a duality between samples and variables,
which can improve the accuracy of the clustering results and
enhance the interpretability of the clustering results.



The Di↵erence between Biclustering and Clustering
Here we explain the di↵erences based on the genetic data.

Figure 1: The Di↵erences Between Clustering and Biclustering



The Application fileds of Biclustering

• Though many scholars proposed Biclustering mthods to make
genetic analysis in the beginning, Biclustering have been
applied to many fields latter, such as text clustering,
collaborative filtering and so on.

• Here we take genetic analysis and text clustering as two
examples to illustrate the advantages of Biclustering.



The Advantages of Biclustering in Genetic Analysis

• In one hand, one specific disease may be a↵ected by only a
few genes, not all genes. The direct clustering methods based
on all genes may ignore this factor.

• In another hand, di↵erent subtypes of one specific disease may
be a↵ected by di↵erent groups of genes, but we don’t know
which genes the di↵erent groups may contain before.

• Consequently, Biclustering can find some patients are similar
in some genes and extract this local relationship.



The Advantages of Biclustering in Text Clustering

• Text matrix is a sparse and high-dimensional matrix.

• In one hand, The computed distances between samples in
sparse matrix may often be small, it’s hard to cluster
documents based on similarity index.

• In another hand, the documents that belong to one theme
often have similarity only in a part of words.

• Consequently, Biclustering can find the duality between some
documents and some words and we can infer the specific
theme based on the main words.



The Division of Biclustering Methods

In fact, Biclustering methods can be roughly divided two types
based on whether we should find the specific structure of
submatrix.

• Structural Biclustering means that there exist a specific
structure in the submatrix. We usually want to find the
specific structures of datasets in genetic analysis.

• Non-structural Biclustering means that there exist no specific
structure in the submatrix. We usually depend the similarity
between samples and variables to find the duality in text
clustering and collaborative filtering.



The Structure of Biclustering Methods

• Let B be a bicluster consisting of a set I of n genes and a set
J of m samples, in which aij denotes the gene i under the
sample j.

Figure 2: The Structure of Gene Data



The Structure of Biclustering
We can divide the specific structural submatrix into three types
based on di↵erent structures.

• Constant values

• Constant values on rows or columns

• Coherent values on both rows and columns

Figure 3: The Di↵erence Structures of Submatrix



Two Biclustering Methods

Here we mainly introduce two methods in Biclustering, including
Sparse Biclustering and Spectral Biclustering.

• Sparse Biclustering is a method to obtain sparse clusters by
means of penalized objective function..

• Spectral Biclustering is the extension of Spectral Clustering,
based on the bipartite graphs.

• Sparse Biclustering methods aims to finding the specific
structures of gene datasets, thus it belongs to structural
biclustering.

• Spectral Biclustering belongs to non-structural biclustering if
we apply it to text clustering, while it can also belong to
structural biclustering if we apply it to genetic analysis.



Sparse Biclustering

• The basis objective function is as follows

argmin Loss+ �⇥ Penalty

• Loss denotes the loss function and we want the loss function
to become small enough.

• Penalty denotes the penalty term, which results to some
sparse parameters.

• In general, By inducing the penalty term, some unimportant
parameters are penalized to be zero, and important
parameters keep non-zero. Thus the objective function
reflects the trade-o↵ between Loss and Penalty, the larger �,
the stronger penalty e↵ects.



Sparse Singular Value Decomposition; SSVD

• Given a gene matrix Xn⇥d, the rows of X denotes samples
and the columns of X denotes genes.

• The singular value decomposition of X is as follows

X = UDV
> =

rX

k=1

skukv
>
k

• r denotes the rank of X.

• U = (u1, · · · , ur) denotes a matrix consists of left orthogonal
singular vectors.

• V = (v1, · · · , vr) denotes a matrix consists of right orthogonal
singular vectors.

• D = diag(s1, · · · , sr) is a diagonal matrix and the elements in
the diagonal line are non-zero singular values (s1, · · · , sr).



SSVD

• Though the SVD can decompose a matrix into the sum of r
rank-1 matrices, here we just focus on the first K largest
matrices, these matrices are called the first K layers:

X t X
(K) =

KX

k=1

skukv
>
k

• In the SSVD algorithm, authors extract the rank-1 matrix
layer by layer. Thus we focus on how to extract the first layer
in later parts, and we can let X minus the first layer as the
basic matrix for extracting the second layer.

• In fact, if we use no penalty, the first layer is the matrix
respect to the largest singular value but we can not get sparse
layer.

• Note that, we can get a series submatrixes of coherent values
by multiplication.



SSVD

• Here we take penalties on the left and right singular vectors to
make the unimportant elements to be zero

• The restored matrix respect to first layer may only have some
elements which are non-zero.

• After realignment to the restored matrix, we can get the first
bicluster.

• Therefore the final objective function is as follows:

argmin ||X � suv
>||2F + s�u

nX

i=1

w1,i|ui|+ s�v

dX

j=1

w2,j |vj |

• we use adaptive lasso penalty and w1 and w2 are weights.

• We can fix u to optimize v and fix v to optimize x until
convergence.



SSVD with Lung Cancer Data
Note that, there exist sparse elements in each layer matrix and we
can find positive or negative e↵ects of di↵erent groups of genes
corresponding di↵erent subtypes of lung cancer.

Figure 4: SSVD with Lung Cancer Data



Sparse Two-way K-Means; STKM

• Based on the idea of Sparse K-Means, we can extend it to
Biclustering.

• Given matrix Xn⇥p, the rows of X denotes samples and the
columns of X denotes variables.

• Suppose the n samples belong to K uncross clusters
(C1, · · · , CK), the p variables belong to R uncross clusters
(D1, · · · , DR).

• Suppose the elements in X are independent and
Xij s N(µkr,�

2)



STKM

• The objective function is as follows

argmin {
KX

k=1

RX

r=1

X

i2Ck

X

j2Dr

(Xij � µkr)
2}

• We can find that if R = p, the problems turn to divide
samples into K clusters by K-Means. If K = n, the problems
turn to divide variables into R clusters by K-Means.

• Thus we can get K ⇥R clusters finally, each of which consists
of samples in Ck and variables in Dr.

• Note that, we can get some submatrixes of constant values.



STKM

• Under such objective function, we may get some clusters, the
means of which are near the overall means µ. But we want to
get some clusters di↵erent from the overall means.

• We can centralization the elements in X to make the means
of all elements to be zero.

• To improve the interpretability of the results and reduce the
variance between clusters, we should shrinkage the means
within clusters which is near zero to be exact zero.

• Finally we induce the following objective function:

argmin {1
2

KX

k=1

RX

r=1

X

i2Ck

X

j2Dr

(Xij � µkr)
2 + �

KX

k=1

RX

r=1

|µkr|}



STKM with Simulated Data

Note that, suppose the hidden submatrix are filled with constant
values, we can use STKM to find more accurate matrix structure
than independent K-means clustering.

Figure 5: STKM with Simulated Data



STKM with Lung Cancer Data
The following estimated mean matrix is similar to the three image
plots obtained using SSVD in lung cancer data aforehand .

Figure 6: STKM with Lung Cancer Data



Convex Clustering; CC

• K-means clustering and Hierarchical clustering are two widely
used clustering methods.

• Due to the instability of these two methods, Lindsten et al.
(2011) and Hocking et al. (2011) used a convex penalty, such
as L1 norm, to replace the hidden L0 norm in these two
methods.

• Because of the convex relaxation for these two methods, we
call such new clustering method, convex clustering.



Convex Clustering; CC

• Chi and Lange (2015) consider the following objective
function for convex clustering.

argmin
A

1

2
||X�A||22 + �

X

i<j

wi,j ||Ai· �Aj·||q

• where A is the approximated matrix which consists of
constant structures. Ai· denotes the ith row of A and || · ||q
is the Lq norm of a vector. wi,j is the non-negative weight
between the ith row and the jth row.



Sparse Convex Clustering; SCC

• Wang et al. (2018) add a group sparsity-induced penalty to
take variable selection and get clustering results
simultaneously so that we can deal with high-dimensional
data.

argmin
A

1

2

pX

j=1

||xj�aj ||22+�1

X

i<j

wi,j ||Ai·�Aj·||2+�2

pX

j=1

uj ||aj ||2

• where uj is the non-negative weight on aj and �2 is a tuning
parameter to take variable selection.

• We can get important variables by shrinking the unimportant
variables by the second penalty.



SCC with Simulated Data

Figure 7: SCC with Simulated Data



Convex Biclustering; CBC

• The convex clustering can be extended to convex biclustering
by adding the similar penalty on the pair-wise columns of the
matrix.

• Di↵erent from SSVD, we want to penalize the di↵erence value
between di↵erent row vectors and the di↵erence value
between di↵erent column vectors simultaneously.

• Because we consider the simultaneous penalty on the rows
and columns di↵erence, we can finally get K ⇥R constant
submatrix.



Convex Biclustering; CBC

• The detail objective function is as follows

F�(U) =
1

2
||X � U ||2F + �[⌦W (U) + ⌦W (U>)]

• Where ⌦W (U) =
P

ij wij ||U.i � U.j ||2, wij denotes the
weights and U.i(Ui.) denotes the ith column(row).

• If we delete one penalty from above two penalties, we may get
a Convex Clustering problem.

• Authors propose to use Sparse Gaussian Kernel Weights as
weights and use DLPA algorithm to turn the Convex
Biclustering into Convex Clustering. Then we can use ADMM
or AMA algorithm to get the final clusters.

• Note that, we can get some submatrixes of constant values.



CBC with Lung Cancer Data

Figure 8: CBC with Lung Cancer Data



Spectral Clustering

• At first, we introduce spectral clustering to help readers
understand spectral biclustering in the latter content.

• Spectral Clustering is a widely used clustering method, which
regards a clustering problem as a graph partition problem.

• Consider a similarity graph G = (V,E). Each vertex vi in this
graph represents a data point xi.

• Two vertices are connected if the similarity sij between the
corresponding data points xi and xj is positive or larger than
a certain threshold, and the edge is weighted by sij .



Spectral Clustering
• We want to find a partition of the graph such that the edges
between di↵erent groups have very low weights (which means
that points in di↵erent clusters are dissimilar from each other)

• The edges within a group have high weights (which means
that points within the same cluster are similar to each other).

Figure 9: Graph Cut of Spectral Clustering



Some definitions in Spectral Clustering
• Let G = (V,E) be an undirected graph with vertex set
V = {v1, · · · , vn}.

• We assume that the graph G is weighted, that is each edge
between two vertices vi and vj carries a non-negative weight
wij � 0.

• The weighted adjacency matrix of the graph is the matrix
W = (wij)i,j=1··· ,n. If wij = 0, this means that the vertices vi
and vj are not connected by an edge.

• As G is undirected we require wij = wji. The degree of a
vertex vi 2 V is defined as

di =
nX

j=1

wij

• The degree matrix D is defined as the diagonal matrix with
the degrees d1, · · · , dn on the diagonal.



Some definitions in Spectral Clustering

• Given a subset of vertices A ⇢ U , we denote its complement
V \A by Ā.

• We define the indicator vector A = (f1, · · · , fn)> 2 Rn as
the vector with entries fi = 1 if vi 2 A and fi = 0 otherwise.
For convenience, we introduce the shorthand notation i 2 A

for the set of indices {i|vi 2 A}.
• For two not necessarily disjoint sets A,B ⇢ V , we define

W (A,B) =
X

i2A,j2B
wij

• Here we consider a way of measuring the ”size” of a subset
A ⇢ V :

vol(A) =
X

i2A
di



Di↵erent similarity graphs in Spectral Clustering

• There are several popular constructions to transform a given
set x1, · · · , xn of data points with pairwise similarities sij or
pairwise distances dij into a graph.

• When constructing similarity graphs the goal is to model the
local neighborhood relationships between the data points.

• The regularly used similarity graphs in spectral clustering are
The ✏-neighborhood graph, k-nearest neighbor graph and
The fully connected graph.

• Here we mainly introduce The fully connected graph.



The fully connected graph in Spectral Clustering

• Here we simply connect all points with positive similarity with
each other, and we weight all edges by sij .

• As the graph should represent the local neighborhood
relationships, this construction is only useful if the similarity
function itself models local neighborhoods.

• An example for such a similarity function is the Gaussian
similarity function

s(xi, xj) = exp(�||xi � xj ||2/(2�2))

where � controls the width of the neighborhoods.



Graph cut point of view

• Given a similarity graph with adjacency matrix W , the
simplest and most direct way to construct a partition of the
graph is to solve the mincut problem.

• For a given number k of subsets, the mincut approach simply
consists in choosing a partition A1, · · · , Ak, which minimizes

cut(A1, · · · , Ak) =
1

2

kX

i=1

W (Ai, Āi)

• However, in practice it often does not lead to satisfactory
partitions.

• Because the solution of mincut simply separates one individual
vertex from the rest of the graph.



Graph cut point of view

• One way to circumvent this problem is to explicitly request
that the sets A1, · · · , Ak are reasonably large.

• The two most common objective functions to encode this are
RatioCut (Hagen and Kahng, 1992) and the normalized cut
Ncut (Shi and Malik, 2000).

• Here we mainly introduce Ncut

Ncut(A1, · · · , Ak) =
1

2

kX

i=1

W (Ai, Āi)

vol(Ai)
=

kX

i=1

cut(Ai, Āi)

vol(Ai)

• Note that this objective function try to achieve the ”balance”
between the minimizing the edge weights between di↵erent
groups and the size of groups



Graph Laplacian Matrix

• The unnormalized graph Laplacian matrix is defined as

L = D �W

• The normalized graph Laplacian matrix is defined as

Lsym = D
�1/2

LD
�1/2 = I �D

�1/2
WD

�1/2

Lrw = D
�1

L = I �D
�1

W

• We denote the first matrix by Lsym as it is a symmetric
matrix, and the second one by Lrw as it is closely related to a
random walk.



Properties of Lsym and Lrw

• For every f 2 Rn we have

f
>
Lsymf =

1

2

nX

i,j=1

wij(
fip
di

� fjp
dj

)
2

.

• � is an eigenvalue of Lrw with eigenvector u if and only if � is
an eigenvalue of Lsym with eigenvector w = D

�1/2
u.

• � is an eigenvalue of Lrw with eigenvector u if and only if �
and u solve the generalized eigen-problem Lu = �Du

• 0 is an eigenvalue of Lrw with the constant one vector as
eigenvector. 0 is an eigenvalue Lsym with eigenvector D1/2

• Lsym and Lrw are positive semi-definite and have n

non-negative real-valued eigenvalues 0 = �1  · · ·  �n



Approximating Ncut in k = 2

• At first, we consider k = 2 and define the cluster indicator
vector f by

fi =

8
<

:

q
vol(Ā)
vol(A) if vi 2 A

�
q

vol(A)
vol(Ā)

if vi 2 Ā.

(1)

• We can check that (Df)> = 0, f>
Df = vol(V ) and

f
>
Lf = vol(V )Ncut(A, Ā)

• Thus we can write the problem of minimizing Ncut by the
equivalent problem

argmin
A

f
>
Lf subject tof as in (1) Df? f

>
Df = vol(V ) (2)



Approximating Ncut in k = 2

• We relax the problem by allowing f to take arbitrary real
values

argmin
f2Rn

f
>
Lf subject to Df? f

>
Df = vol(V ) (3)

• Now we substitute g = D
1/2

f and the problem can be
reformulated as

argmin
g2Rn

g
>
D

�1/2
LD

�1/2
g subject to g?D

1/2
, ||g||2 = vol(V ) (4)

• Note that D�1/2
LD

�1/2 = Lsym, vol(V ) is a constant and
D

1/2 is the first eigenvector of Lsym.



Approximating Ncut in k = 2

• Problem (4) is in the form of the standard Rayleigh-Ritz
theorem and its solution g is given by the second eigenvector
of Lsym.

• Re-substituting f = D
�1/2

g and using Proposition we
described before, we can find that f is the second eigenvector
of Lrw, or equivalently the generalized eigenvector of
Lu = �Du.



Approximating Ncut in k > 2

• For the case of finding k � 2 clusters, we define the indictor
vectors hj(h1,j , · · · , hn,j)> by

hi,j =

⇢
1/
p
(vol)(Aj) if vi 2 Aj

0 otherwise.
(5)

• Then we set the matrix H as the matrix containing those k

indicator vectors as columns.

• Observe that H>
H = I, hi

>
Dhi = 1 and

hi
>
Lhi = cut(Ai, Āi)/vol(Ai).

• We can reformulate the problem of minimizing Ncut as

argmin
A1,··· ,Ak

Tr(H>
LH) subject to H

>
DH = I,H as in(5) (6)



Approximating Ncut in k > 2

• Relaxing the discreteness condition and substituting
T = D

1/2
H, we can obtain the relaxed problem

argmin
T2Rn⇥k

Tr(T>
D

�1/2
LD

�1/2
T ) subject to T

>
T = I (7)

• This is the standard trace minimization problem which is
solved by the matrix T which contains the first k eigenvectors
of Lsym as columns.

• Re-substituting H = D
�1/2

T and using the Proposition, we
see that the solution H consists of the first k eigenvectors of
the matrix Lrw or the first k generalized eigenvectors of
Lu = �Du

• This yields the normalized spectral clustering algorithm
according to Shi and Malik (2000).



Spectral Clustering Algorithm

Figure 10: Normalized Spectral Clustering Algorithm



Spectral Biclustering
• Dhillon (2001) firstly extended Spectral Clustering to Spectral
Biclustering on document clustering problem.

• Spectral Biclustering focuses on the similarity between
samples and variables.

Figure 11: Graph Cut of Spectral Biclustering



Spectral Biclustering

• Consider a matrix An⇥m to construct a bipartite graph G.

• The row vertices (R = 1, · · · , n) denote the rows and the
column vertices (C = 1, · · · ,m) denote the columns.

• Only the row vertices can link with the column vertices so
that there exist no link with row vertices or column vertices.

• Di↵erent from the Spectral Clustering, we want to extract the
local relationship between samples and variables, thus we can
design such a bipartite graph.



Laplacian Matrix

Here we construct two diagonal matrices, D1 and D2. For D1, the
diagonal elements are the sum of the row of matrix A. For D2, the
diagonal elements are the sum of the column of matrix A.

• We can get a new degree matrix and a new adjacent matrix

D =


D1 0
0 D2

�

W =


0 A

A
> 0

�

• In the same way, we can get a new Laplacian Matrix

L = D �W =


D1 �A

�A
>

D2

�



The process of Spectral Biclustering

• Here we use Normalized-Cut Objective function, which is
corresponding to the above Laplacian Matrix.

• Then we may ignore same technical details and find that the
solution to the objective function in binary classification
problem are the eigenvectors respect to the second smallest
eigenvalue in Lz = �Dz

• Based on the theorem, the minimum partition problem turns
to find the specific eigenvector respect to D

�1
L



The process of Spectral Biclustering

• Because of the special structure of bipartite graph, we can
turn the Eigen-decomposition problem into the singular value

decomposition problem of matrix An = D
�1/2
1 AD

�1/2
2

• Then we can get the left and right singular vectors respect to
the second largest singular values, which is u2 and v2.

• Finally we can obtain the solution vector, which is

z =

"
D

�1/2
1 u2

D
�1/2
2 v2

#



The process of Spectral Biclustering

• When the number of clusters are greater than 2, we can get
the solution in the same way

Z =

"
D

�1/2
1 U

D
�1/2
2 V

#

• Where U and V are left singular matrix and right singular
matrix respect to the largest l eigenvalues except for the
largest eigenvalue.

• Then we can take K-means to Z and get the k clusters, in
which some samples correspond to some variables.



The Unification of Spectral Biclustering

• Note that, we don’t need to find a specific structure in this
method, because the similarity is enough to extract the
relationship between some documents and some words.

• While Kluger (2003) derive the similar Spectral Biclusteirng
method based on genetic structure of coherent values.

• Thus we unify this kind of method as Spectral Biclustering
and it can apply to both genetic filed and text mining field.



Thank you


