
Linear Model Selection and Regularization

• Recall the linear model

Y = �0 + �1X1 + · · ·+ �pXp + ✏.

• In the lectures that follow, we consider some approaches for
extending the linear model framework. In the lectures
covering Chapter 7 of the text, we generalize the linear
model in order to accommodate non-linear, but still
additive, relationships.

• In the lectures covering Chapter 8 we consider even more
general non-linear models.
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In praise of linear models!

• Despite its simplicity, the linear model has distinct
advantages in terms of its interpretability and often shows
good predictive performance.

• Hence we discuss in this lecture some ways in which the
simple linear model can be improved, by replacing ordinary
least squares fitting with some alternative fitting
procedures.
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Why consider alternatives to least squares?

• Prediction Accuracy: especially when p > n, to control the
variance.

• Model Interpretability: By removing irrelevant features —
that is, by setting the corresponding coe�cient estimates
to zero — we can obtain a model that is more easily
interpreted. We will present some approaches for
automatically performing feature selection.
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Three classes of methods

• Subset Selection. We identify a subset of the p predictors
that we believe to be related to the response. We then fit a
model using least squares on the reduced set of variables.

• Shrinkage. We fit a model involving all p predictors, but
the estimated coe�cients are shrunken towards zero
relative to the least squares estimates. This shrinkage (also
known as regularization) has the e↵ect of reducing variance
and can also perform variable selection.

• Dimension Reduction. We project the p predictors into a
M -dimensional subspace, where M < p. This is achieved by
computing M di↵erent linear combinations, or projections,
of the variables. Then these M projections are used as
predictors to fit a linear regression model by least squares.
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Subset Selection

Best subset and stepwise model selection procedures

Best Subset Selection

1. Let M0 denote the null model, which contains no
predictors. This model simply predicts the sample mean
for each observation.

2. For k = 1, 2, . . . p:
(a) Fit all

��
�
�
models that contain exactly k predictors.

(b) Pick the best among these
��
�
�
models, and call it M� . Here

best is defined as having the smallest RSS, or equivalently
largest R2.

3. Select a single best model from among M0, . . . ,Mp using
cross-validated prediction error, Cp (AIC), BIC, or
adjusted R2.
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Example- Credit data set
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For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R2 are displayed. The red
frontier tracks the best model for a given number of predictors,
according to RSS and R2. Though the data set contains only
ten predictors, the x-axis ranges from 1 to 11, since one of the
variables is categorical and takes on three values, leading to the
creation of two dummy variables
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Extensions to other models

• Although we have presented best subset selection here for
least squares regression, the same ideas apply to other
types of models, such as logistic regression.

• The deviance— negative two times the maximized
log-likelihood— plays the role of RSS for a broader class of
models.
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Stepwise Selection

• For computational reasons, best subset selection cannot be
applied with very large p. Why not?

• Best subset selection may also su↵er from statistical
problems when p is large: larger the search space, the
higher the chance of finding models that look good on the
training data, even though they might not have any
predictive power on future data.

• Thus an enormous search space can lead to overfitting and
high variance of the coe�cient estimates.

• For both of these reasons, stepwise methods, which explore
a far more restricted set of models, are attractive
alternatives to best subset selection.
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Forward Stepwise Selection

• Forward stepwise selection begins with a model containing
no predictors, and then adds predictors to the model,
one-at-a-time, until all of the predictors are in the model.

• In particular, at each step the variable that gives the
greatest additional improvement to the fit is added to the
model.
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In Detail

Forward Stepwise Selection

1. Let M0 denote the null model, which contains no
predictors.

2. For k = 0, . . . , p� 1:
2.1 Consider all p� k models that augment the predictors in

M� with one additional predictor.
2.2 Choose the best among these p� k models, and call it

M�+1. Here best is defined as having smallest RSS or
highest R2.

3. Select a single best model from among M0, . . . ,Mp using
cross-validated prediction error, Cp (AIC), BIC, or
adjusted R2.
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More on Forward Stepwise Selection

• Computational advantage over best subset selection is
clear.

• It is not guaranteed to find the best possible model out of
all 2p models containing subsets of the p predictors. Why
not? Give an example.

11 / 57



Credit data example

# Variables Best subset Forward stepwise
One rating rating

Two rating, income rating, income
Three rating, income, student rating, income, student
Four cards, income rating, income,

student, limit student, limit

The first four selected models for best subset selection and
forward stepwise selection on the Credit data set. The first
three models are identical but the fourth models di↵er.
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Backward Stepwise Selection

• Like forward stepwise selection, backward stepwise selection
provides an e�cient alternative to best subset selection.

• However, unlike forward stepwise selection, it begins with
the full least squares model containing all p predictors, and
then iteratively removes the least useful predictor,
one-at-a-time.

13 / 57



Backward Stepwise Selection: details

Backward Stepwise Selection

1. Let Mp denote the full model, which contains all p
predictors.

2. For k = p, p� 1, . . . , 1:
2.1 Consider all k models that contain all but one of the

predictors in M� , for a total of k � 1 predictors.
2.2 Choose the best among these k models, and call it M��1.

Here best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, . . . ,Mp using
cross-validated prediction error, Cp (AIC), BIC, or
adjusted R2.
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More on Backward Stepwise Selection

• Like forward stepwise selection, the backward selection
approach searches through only 1 + p(p+ 1)/2 models, and
so can be applied in settings where p is too large to apply
best subset selection

• Like forward stepwise selection, backward stepwise
selection is not guaranteed to yield the best model
containing a subset of the p predictors.

• Backward selection requires that the number of samples n
is larger than the number of variables p (so that the full
model can be fit). In contrast, forward stepwise can be
used even when n < p, and so is the only viable subset
method when p is very large.
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Choosing the Optimal Model

• The model containing all of the predictors will always have
the smallest RSS and the largest R2, since these quantities
are related to the training error.

• We wish to choose a model with low test error, not a model
with low training error. Recall that training error is usually
a poor estimate of test error.

• Therefore, RSS and R2 are not suitable for selecting the
best model among a collection of models with di↵erent
numbers of predictors.
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Estimating test error: two approaches

• We can indirectly estimate test error by making an
adjustment to the training error to account for the bias due
to overfitting.

• We can directly estimate the test error, using either a
validation set approach or a cross-validation approach, as
discussed in previous lectures.

• We illustrate both approaches next.
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Cp, AIC, BIC, and Adjusted R2

• These techniques adjust the training error for the model
size, and can be used to select among a set of models with
di↵erent numbers of variables.

• The next figure displays Cp, BIC, and adjusted R2 for the
best model of each size produced by best subset selection
on the Credit data set.
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Now for some details

• Mallow’s Cp:

Cp =
1

n

�
RSS + 2d�̂2

�
,

where d is the total # of parameters used and �̂2 is an
estimate of the variance of the error ✏ associated with each
response measurement.

• The AIC criterion is defined for a large class of models fit
by maximum likelihood:

AIC = �2 logL+ 2 · d

where L is the maximized value of the likelihood function
for the estimated model.

• In the case of the linear model with Gaussian errors,
maximum likelihood and least squares are the same thing,
and Cp and AIC are equivalent. Prove this.
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Details on BIC

BIC =
1

n

�
RSS + log(n)d�̂2

�
.

• Like Cp, the BIC will tend to take on a small value for a
model with a low test error, and so generally we select the
model that has the lowest BIC value.

• Notice that BIC replaces the 2d�̂2 used by Cp with a
log(n)d�̂2 term, where n is the number of observations.

• Since log n > 2 for any n > 7, the BIC statistic generally
places a heavier penalty on models with many variables,
and hence results in the selection of smaller models than
Cp. See Figure on slide 19.
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Adjusted R2

• For a least squares model with d variables, the adjusted R2

statistic is calculated as

Adjusted R2 = 1� RSS/(n� d� 1)

TSS/(n� 1)
.

where TSS is the total sum of squares.
• Unlike Cp, AIC, and BIC, for which a small value indicates
a model with a low test error, a large value of adjusted R2

indicates a model with a small test error.
• Maximizing the adjusted R2 is equivalent to minimizing

RSS
n�d�1 . While RSS always decreases as the number of

variables in the model increases, RSS
n�d�1 may increase or

decrease, due to the presence of d in the denominator.
• Unlike the R2 statistic, the adjusted R2 statistic pays a
price for the inclusion of unnecessary variables in the
model. See Figure on slide 19.
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Credit data example
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Validation and Cross-Validation

• Each of the procedures returns a sequence of models Mk

indexed by model size k = 0, 1, 2, . . .. Our job here is to
select k̂. Once selected, we will return model Mk̂

• We compute the validation set error or the cross-validation
error for each model Mk under consideration, and then
select the k for which the resulting estimated test error is
smallest.

• This procedure has an advantage relative to AIC, BIC, Cp,
and adjusted R2, in that it provides a direct estimate of
the test error, and doesn’t require an estimate of the error
variance �2.

• It can also be used in a wider range of model selection
tasks, even in cases where it is hard to pinpoint the model
degrees of freedom (e.g. the number of predictors in the
model) or hard to estimate the error variance �2.
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Credit data example
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Details of Previous Figure

• The validation errors were calculated by randomly selecting
three-quarters of the observations as the training set, and
the remainder as the validation set.

• The cross-validation errors were computed using k = 10
folds. In this case, the validation and cross-validation
methods both result in a six-variable model.

• However, all three approaches suggest that the four-, five-,
and six-variable models are roughly equivalent in terms of
their test errors.

• In this setting, we can select a model using the
one-standard-error rule. We first calculate the standard
error of the estimated test MSE for each model size, and
then select the smallest model for which the estimated test
error is within one standard error of the lowest point on
the curve. What is the rationale for this?
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Shrinkage methods

• Gauss-Markov theorem: the OLS estimates have the
smallest variance among all linear unbiased estimates.

• However, the restriction to unbiased estimates is not
necessarily to a wise one, there may exist a biased estimator
with smaller MSE. Such as ridge regression and lasso.

• Consider the mean squared error of an estimator ✓̃ in
estimating ✓

MSE(✓̃) = E(✓̃ � ✓)2 = Var(✓̃) + (E(✓̃)� ✓)2

• The expected prediction error of an estimate f̃ (x0) = xT
0
�̃

is

E
⇣
Y0 � f̃ (x0)

⌘
2

= �2 +MSE
⇣
f̃ (x0)

⌘

Bias-Variance tradeo↵, scarify bias to reduce variance and improve overall

prediction accuracy



Shrinkage Methods

Best subset is a discrete process - variables are either retained or discarded - it

often exhibits high variance.

Ridge regression and Lasso

• The subset selection methods use least squares to fit a
linear model that contains a subset of the predictors.

• As an alternative, we can fit a model containing all p
predictors using a technique that constrains or regularizes
the coe�cient estimates, or equivalently, that shrinks the
coe�cient estimates towards zero.

• It may not be immediately obvious why such a constraint
should improve the fit, but it turns out that shrinking the
coe�cient estimates can significantly reduce their variance.



Ridge regression

• Recall that the least squares fitting procedure estimates
�0,�1, . . . ,�p using the values that minimize

RSS =
nX

i=1

0

@yi � �0 �
pX

j=1

�jxij

1

A
2

.

• In contrast, the ridge regression coe�cient estimates �̂R

are the values that minimize

nX

i=1

0

@yi � �0 �
pX

j=1

�jxij

1

A
2

+ �
pX

j=1

�2
j = RSS + �

pX

j=1

�2
j ,

where � � 0 is a tuning parameter, to be determined
separately.
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Ridge regression

• Writing the criterion in matrix form

RSS(�) = (y �X�)T (y �X�) + ��T�

• the ridge regression solutions are easily seen to be

�ridge =
�
XTX + �I

��1

XT y

where I is the p⇥ p identity matrix.

Ridge penalty was first introduced in statistics by Hoerl and Kennard, 1970

张晓晨
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Ridge regression

• The singular value decomposition (SVD) of the centered
input matrix X gives us some additional insight into the
nature of ridge regression.

• The SVD of the N ⇥ p matrix X has the form X = UDV T .
Here U and V are N ⇥ p and p⇥ p orthogonal matrices,
with the columns of U spanning the column space of X,
and the columns of V spanning the row space. D is a p⇥ p
diagonal matrix, with diagonal entries
d1 � d2 � · · · � dp � 0 called the singular values of X. If
one or more values dj = 0, X is singular.
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Ridge regression

Using the singular value decomposition we can write the least squares fitted vector

as

X�̂ls
= X

⇣
XTX

⌘�1

XTy

= UUTy,
(3.46)

Now the ridge solutions are

X�̂ridge
= X

⇣
XTX+ �I

⌘�1

XTy

= UD
�
D2

+ �I
��1

DUTy

=

pX

j=1

uj

d2j
d2j + �

uT
j y,

(3.47)

where the uj are the columns of U. Note that since � � 0, we have

d2j/
⇣
d2j + �

⌘
 1. Like linear regression, ridge regression computes the coordinates

of y with respect to the orthonormal basis U. It then shrinks these coordinates by

the factors d2j/
⇣
d2j + �

⌘
. This means that a greater amount of shrinkage is

applied to the coordinates of basis vectors with smaller d2j .



Ridge regression: continued

• As with least squares, ridge regression seeks coe�cient
estimates that fit the data well, by making the RSS small.

• However, the second term, �
P

j �
2
j , called a shrinkage

penalty, is small when �1, . . . ,�p are close to zero, and so it
has the e↵ect of shrinking the estimates of �j towards zero.

• The tuning parameter � serves to control the relative
impact of these two terms on the regression coe�cient
estimates.

• Selecting a good value for � is critical; cross-validation is
used for this.
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Credit data example
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Details of Previous Figure

• In the left-hand panel, each curve corresponds to the ridge
regression coe�cient estimate for one of the ten variables,
plotted as a function of �.

• The right-hand panel displays the same ridge coe�cient
estimates as the left-hand panel, but instead of displaying
� on the x-axis, we now display k�̂R

� k2/k�̂k2, where �̂
denotes the vector of least squares coe�cient estimates.

• The notation k�k2 denotes the `2 norm (pronounced “ell

2”) of a vector, and is defined as k�k2 =
qPp

j=1 �j
2.
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Ridge regression: scaling of predictors

• The standard least squares coe�cient estimates are scale
equivariant: multiplying Xj by a constant c simply leads to
a scaling of the least squares coe�cient estimates by a
factor of 1/c. In other words, regardless of how the jth
predictor is scaled, Xj �̂j will remain the same.

• In contrast, the ridge regression coe�cient estimates can
change substantially when multiplying a given predictor by
a constant, due to the sum of squared coe�cients term in
the penalty part of the ridge regression objective function.

• Therefore, it is best to apply ridge regression after
standardizing the predictors, using the formula

x̃ij =
xijq

1
n

Pn
i=1(xij � xj)2
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Why Does Ridge Regression Improve Over Least

Squares?

The Bias-Variance tradeo↵
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Simulated data with n = 50 observations, p = 45 predictors, all having

nonzero coe�cients. Squared bias (black), variance (green), and test

mean squared error (purple) for the ridge regression predictions on a

simulated data set, as a function of � and k�̂R
� k2/k�̂k2. The

horizontal dashed lines indicate the minimum possible MSE. The

purple crosses indicate the ridge regression models for which the MSE
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Lasso

• Tibshirani, R. (1996) Regression shrinkage and selection
via lasso, JRSSB, 58,267-288.



The Lasso

• Ridge regression does have one obvious disadvantage:
unlike subset selection, which will generally select models
that involve just a subset of the variables, ridge regression
will include all p predictors in the final model

• The Lasso is a relatively recent alternative to ridge
regression that overcomes this disadvantage. The lasso
coe�cients, �̂L

� , minimize the quantity

nX

i=1

0

@yi � �0 �
pX

j=1

�jxij

1

A
2

+ �
pX

j=1

|�j | = RSS + �
pX

j=1

|�j |.

• In statistical parlance, the lasso uses an `1 (pronounced
“ell 1”) penalty instead of an `2 penalty. The `1 norm of a
coe�cient vector � is given by k�k1 =

P
|�j |.
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The Lasso: continued

• As with ridge regression, the lasso shrinks the coe�cient
estimates towards zero.

• However, in the case of the lasso, the `1 penalty has the
e↵ect of forcing some of the coe�cient estimates to be
exactly equal to zero when the tuning parameter � is
su�ciently large.

• Hence, much like best subset selection, the lasso performs
variable selection.

• We say that the lasso yields sparse models — that is,
models that involve only a subset of the variables.

• As in ridge regression, selecting a good value of � for the
lasso is critical; cross-validation is again the method of
choice.
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Example: Credit dataset
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Non-negative garotte
• The motivation for the lasso came from non-negative
garottee (Breiman, 1993).

NX

i=1

(yi � ↵�
X

j

cj �̂0

j xij)
2, s.t. cj � 0,

X
cj  t

• The garotte starts with the OLS estimates and shrinks
them by non-negative factors whose sum is constrained.

• The garotte has consistently lower prediction error than
subset selection and is competitive with ridge regression
except when the true model has many small nonzero
coe�cients.

• The drawback of the garotte is that its solution depends on
both the sign and the magnitude of the OLS estimates. In
overfit or highly correlated settings where the OLS
estimates behave poorly, the garotte may su↵er as a result.



The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in
coe�cient estimates that are exactly equal to zero?

One can show that the lasso and ridge regression coe�cient
estimates solve the problems

minimize
�

nX

i=1

0

@yi � �0 �
pX

j=1

�j xij

1

A
2

subject to
pX

j=1

|�j |  s

and

minimize
�

nX

i=1

0

@yi � �0 �
pX

j=1

�j xij

1

A
2

subject to
pX

j=1

�2
j  s,

respectively.
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The Lasso Picture
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Orthonormal design case

Estimators of �j in the case of orthonormal columns of X
(orthonormal matrix : X>X = I). sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x.

Estimator Formula

Best subset (size M ) �̂j · I
⇣����̂j

��� �
����̂(M)

���
⌘

hard thresholding

Ridge �̂j/(1 + �)

Lasso sign

⇣
�̂j

⌘⇣����̂j

���� �
⌘

+

soft thresholding



Computation of Lasso solution:single predictor
• The lasso problem is a convex program, specifically a
quadratic program (QP) with a convex constraint.
Let’s first consider a single predictor setting, based on samples {(zi, yi)}Ni=1

(for convenience we have given the name zi to this single xi1 ). The problem

then is to solve

minimize
�

n
1

2N

PN
i=1

(yi � zi�)
2
+ �|�|

o
. (2.9)

The standard approach to this univariate minimization problem would be to

take the gradient (first derivative) with respect to �, and set it to zero.

There is a complication, however, because the absolute value function |�|
does not have a derivative at � = 0. However we can proceed by direct

inspection of the function (2.9), and find that

�̂ =

8
<

:

1

N hz,yi � � if
1

N hz,yi > �,
0 if

1

N |hz,yi|  �,
1

N hz,yi+ � if
1

N hz,yi < ��.
(2.10)

(Exercise 2.2 ), which we can write succinctly as

�̂ = S�

✓
1

N
hz,yi

◆
. (2.11)

Here the soft-thresholding operator

S�(x) = sign(x)(|x|� �)+ (2.12)
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Coordinate descent algorithm for Lasso

The L1 penalty makes the solutions nonlinear in the yi, and there is no closed

form expression as in ridge regression. Computing the lasso solution is a quadratic

programming problem

Algorithm 1 Coordinate descent minimization

1: Let �[0] 2 Rp
be an initial parameter vector. Set m = 0.

2: repeat
3: Increase m by one: m m+ 1.

Denote by S [m]
the index cycling through the coordinates {1, · · · , p}:

S [m]
= S [m�1]

+ 1 mod p. Abbreviate by j = S [m]
the value of S [m]

.

4: if

���Gj

⇣
�
[m�1]

�j

⌘���  � : set �
[m]

j = 0,

otherwise: �
[m]

j = argmin

�j

Q�(�
[m�1]

+j ),

where �
[m�1]

�j is the parameter vector where the jth component is set to zero and

�
[m�1]

+j is the parameter vector which equals �[m�1]
except for the jth component

where it is equal to �j (i.e. the argument we minimize over).

5: until numerical convergence
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Coordinate descent algorithm for Lasso
The coordinatewise optimization above can easily incorporate
the more general case where some parameters are unpenalized,
i.e.,

�̂ = argmin
�

Q�(�)

Q�(�) = kY �X�k2
2
/n+ �

Pp
j=r+1

|�j |

and thus, �1, . . . ,�r are unpenalized. The up-dating step in the
optimization algorithm then looks as follows:

if j 2 {1, . . . , r} : �[m]

j = argmin
�j

Q�

⇣
�[m�1]

+j

⌘
,

if j 2 {r + 1, . . . , p} :

if
���Gj

⇣
�[m�1]

�j

⌘���  � : set�[m]

j = 0,

otherwise: �[m]

j = argmin
�j

Q�

⇣
�[m�1]

+j

⌘
.



Comparing the Lasso and Ridge Regression
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Left: Plots of squared bias (black), variance (green), and test
MSE (purple) for the lasso on simulated data set of Slide 32.
Right: Comparison of squared bias, variance and test MSE
between lasso (solid) and ridge (dashed). Both are plotted
against their R2 on the training data, as a common form of
indexing. The crosses in both plots indicate the lasso model for
which the MSE is smallest.
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Comparing the Lasso and Ridge Regression: continued
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Left: Plots of squared bias (black), variance (green), and test
MSE (purple) for the lasso. The simulated data is similar to
that in Slide 38, except that now only two predictors are related
to the response. Right: Comparison of squared bias, variance
and test MSE between lasso (solid) and ridge (dashed). Both
are plotted against their R2 on the training data, as a common
form of indexing. The crosses in both plots indicate the lasso
model for which the MSE is smallest.
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Conclusions

• These two examples illustrate that neither ridge regression
nor the lasso will universally dominate the other.

• In general, one might expect the lasso to perform better
when the response is a function of only a relatively small
number of predictors.

• However, the number of predictors that is related to the
response is never known a priori for real data sets.

• A technique such as cross-validation can be used in order
to determine which approach is better on a particular data
set.
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Selecting the Tuning Parameter for Ridge Regression

and Lasso

• As for subset selection, for ridge regression and lasso we
require a method to determine which of the models under
consideration is best.

• That is, we require a method selecting a value for the
tuning parameter � or equivalently, the value of the
constraint s.

• Cross-validation provides a simple way to tackle this
problem. We choose a grid of � values, and compute the
cross-validation error rate for each value of �.

• We then select the tuning parameter value for which the
cross-validation error is smallest.

• Finally, the model is re-fit using all of the available
observations and the selected value of the tuning
parameter.
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Credit data example
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Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various values of �.
Right: The coe�cient estimates as a function of �. The vertical
dashed lines indicates the value of � selected by cross-validation.
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Simulated data example
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Left: Ten-fold cross-validation MSE for the lasso, applied to the
sparse simulated data set from Slide 39. Right: The
corresponding lasso coe�cient estimates are displayed. The
vertical dashed lines indicate the lasso fit for which the
cross-validation error is smallest.
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Relaxed Lasso
• Least-squares fit on the subset of the three predictors tends
to expand the lasso estimates away from zero.

• The nonzero estimates from the lasso tend to be biased
toward zero, so the debiasing in the right panel can often
improve the prediction error of the model. This two-stage
process is also known as the relaxed lasso (Meinshausen
2007).

Table 2.2 Results from analysis of the crime data. Left panel shows the
least-squares estimates, standard errors, and their ratio (Z-score). Middle and
right panels show the corresponding results for the lasso, and the least-squares
estimates applied to the subset of predictors chosen by the lasso.

LS coef SE Z Lasso SE Z LS SE Z

funding 10.98 3.08 3.6 8.84 3.55 2.5 11.29 2.90 3.9
hs -6.09 6.54 -0.9 -1.41 3.73 -0.4 -4.76 4.53 -1.1
not-hs 5.48 10.05 0.5 3.12 5.05 0.6 3.44 7.83 0.4
college 0.38 4.42 0.1 0.0 - - 0.0 - -
college4 5.50 13.75 0.4 0.0 - - 0.0 - -
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SCAD

A good penalty function should result in an estimator with
three properties.

1.Unbiasedness: The resulting estimator is nearly unbiased
when the true unknown parameter is large to avoid unnecessary
modeling bias.

2.Sparsity : The resulting estimator is a thresholding rule,
which automatically sets small estimated coe�cients to zero to
reduce model complexity.

3.Continuity : The resulting estimator is continuous in data
z to avoid instability in model prediction.

Reference: Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle

properties[J]. Journal of the American statistical Association, 2001, 96(456): 1348-1360.



SCAD

• Suppose that we have a linear model

Y = X� + ✏

and the columns of X are orthonormal.

• Then �̂ = XTY.

• The objective function for penalized least squares

Q (�) = 1

2
ky �X�k2 + �

pP
j=1

pj (|�j |)

= 1

2
ky � ŷ + ŷ �X�k2 + �

pP
j=1

pj (|�j |)

= 1

2
ky � ŷk2 + 1

2
kXz �X�k2 + �

pP
j=1

pj (|�j |

= 1

2
ky � ŷk2 + 1

2

pP
j=1

(zj � �j)
2 + �

pP
j=1

pj (|�j |)



SCAD

• The first term is constant with respect to �, so minimizing
the object Q(�) reduces to a componentwise regression
problem.

• The minimization problem of penalized least squares is
equivalent to minimizing componentwise

Q (✓) =
1

2
(z � ✓)2 + p� (|✓|)

• Then take derivative

dQ(✓)
d✓ = (✓ � z) + sgn (✓) p0� (|✓|)

= sgn (✓) {|✓|+ p0� (|✓|)}� z

• and solve dQ(✓)
d✓ = 0 to get the minimizer of Q(✓)



SCAD

Unbiasedness condition:p0�(|✓|) = 0 for large |✓|
Since

dQ (✓)

d✓
= (✓ � z) + sgn (✓) p0� (|✓|)

It is easy to see that when p0�(|✓|) = 0 for large |✓|, the resulting

estimator is z when |z| is su�ciently large, which is that ✓̂ = z.



SCAD

Sparsity condition:min✓{|✓|+ p0�(|✓|)} > 0

sparsity , when z is small,0 is the minimizer ofQ(✓)

, dQ(✓)

d✓
> 0 when ✓ > 0&

dQ(✓)

d✓
< 0 when ✓ < 0

, |✓|+ p0�(|✓|) > z when ✓ > 0&|� ✓|+ p0�(|✓|) < z when ✓ < 0

, when |z| < min✓ 6=0{|✓|+ p0�(|✓|)}, ✓̂ = 0

Thus, we need the condition min✓{|✓|+ p0�(|✓|)} > 0 so that the
resulting estimator can automatically set small estimated
coe�cients to zero.



SCAD

Continuity Condition: argmin✓ 6=0{|✓|+ p0�(|✓|)} = 0

• when
|✓|+ p0�(|✓|) > |z| ) ✓̂ = 0

• when
|✓|+ p0�(|✓|) = |z| ) ✓̂ = ✓0

Thus for continuity, we need ✓0 goes to zero, which is
argmin✓ 6=0{|✓|+ p0�(|✓|)} = 0



SCAD

• Fan and Li (2001) showed that the lasso can perform
automatic variable selection because the `1 penalty is
singular at the origin.

• On the other hand, the lasso shrinkage produces biased
estimates for the large coe�cients, and thus it could be
suboptimal in terms of estimation risk.

• Fan and Li (2001) proposed a smoothly clipped absolute
deviation (SCAD) penalty for variable selection

p0�(✓) = �{I(✓  �) +
(a�� ✓)+
(a� 1)�

I(✓ > �)}

P (|✓|;�, a) =

8
><

>:

�|✓| if 0  |✓| < �

� ✓2�2a�|✓|+�2

2(a�1)
if �  |✓| < a�

(a+ 1)�2/2 otherwise
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SCAD

This penalty function leaves large values of ✓ not excessively
penalized and makes the solution continuous. The resulting
solution is given by

✓̂ =

8
<

:

sgn(z)(|z|� �)+, when |z|  2�,
{(a� 1)z � sgn(z)a�}/(a� 2), when 2� < |z|  a�,
z, when |z| > a�.
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Theorem:oracle property

• For generalized linear models, assume V1, . . . ,Vn are i.i.d
with density fi(g(xTi �), yi),where Vi = (Xi, Yi)

• Let �0 = (�10, . . . ,�d0)T = (�T
10,�

T
20)

T , assume �20 = 0

• let I(�0) be the fisher information matrix and let I1(�10, 0)
be the fisher information knowing �20 = 0

• an = max{p0�(|�j0|) : �j0 6= 0}
• Let L(�) be the log-likelihood function of V1, . . . ,Vn

Q(�) = L(�)� n
dP

j=1

p�n(|�j |)



Theorem:oracle property

Theorem
conditons(A)-(C) are satisfied. if �n ! 0 and

p
n�n ! 1 as

n ! 1,then with probability tending to 1,the root-n consistent

local maximizers �̂ =

✓
�̂1
�̂2

◆
in Theorem 1 must satisfy:

(a)Sparsity:�̂2 = 0
(b)Asympototic normality:

p
n(I1(�10)+⌃){�̂1��10+(I1(�10) + ⌃)�1b} ! N{0, I1(�10)}



Adaptive Lasso

• We can certainly assign di↵erent weights to di↵erent
coe�cients.

• Weighted lasso

argmin
�

������
y �

pX

j=1

xj�j

������

2

+ �
pX

j=1

wj |�j | ,

where w is a known weights vector.

• We show that if the weights are data-dependent and
cleverly chosen, then the weighted lasso can have the oracle
properties.

Reference: Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle

properties[J]. Journal of the American statistical Association, 2001, 96(456): 1348-1360.



Adaptive Lasso

• We show that if the weights are data-dependent and
cleverly chosen, then the weighted lasso can have the oracle
properties.

• Suppose that �̂ is a root-n -consistent estimator to �⇤; for

example, we can use �̂ (ols). Let A⇤
n =

n
j : �̂⇤(n)

j 6= 0
o

Pick a � > 0, and define the weight vector ŵ = 1/|�̂|� . The
adaptive lasso estimates �̂⇤(n) are given by

�̂⇤(n) = argmin
�

������
y �

pX

j=1

xj�j

������

2

+ �n

pX

j=1

ŵj |�j | . (4)

• It is worth emphasizing that (4) is a convex optimization.

Reference: Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle

properties[J]. Journal of the American statistical Association, 2001, 96(456): 1348-1360.



Adaptive Lasso

Theorem 2 (Oracle properties). Suppose that �n/
p
n ! 0 and

�nn(��1)/2 ! 1. Then the adaptive lasso estimates must satisfy
the following:

1. Consistency in variable selection: limn P (A⇤
n = A) = 1

2. Asymptotic normality:

p
n
⇣
�̂⇤(n)
A � �⇤

A

⌘
!d N

�
0,�2 ⇥C�1

11

�
.



Adaptive Lasso

Algorithm 1 (The LARS algorithm for the adaptive lasso).

1. Define x⇤⇤
j = xj/ŵj , j = 1, 2, . . . , p .

2. Solve the lasso problem for all �n,

�̂⇤⇤ = argmin
�

||y �
pX

j=1

x⇤⇤
j �jk2 + �n

pX

j=1

|�j |

3. Output �̂⇤(n)
j = �̂⇤⇤

j /ŵj , j = 1, 2, . . . , p.



Adaptive Lasso
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Generalization of shrinkage methods

• We can generalize ridge regression and the lasso. Consider
the criterion

�̃ = argmin
�

8
<

:

NX

i=1

0

@yi � �0 �
pX

j=1

xij�j

1

A
2

+ �
pX

j=1

|�j |q
9
=

;

• q > 1, |�j |q is di↵erentiable at 0, and so does not share the
ability of lasso.



Elastic net

• Although the lasso has shown success in many situations, it
has some limitations.

• Consider the following three seenarios.
• (a) In the p > n case, the lasso selects at most n variables before it

saturates, because of the nature of the convex optimization problem.

This seems to be a limititing feature for a variable selection method.

Moreovar, the lasso is no well defined unless the bound on the L1

-norm of the coe�cients is smaller rhan a certain value.

• (b) If there is a group of variables among which the pairwise

correlations are very high, then the lasso tends to select only one

variable from the group and does not care which one is selected. See

Section 2.3.
• (c) For usual n > p situations, if there are high correlations between

predictors, it has been empirically observed that the prediction

performance of the lasso is dominated by ridge regression (Tibshirani,

1996.)

Reference: Zou H, Hastie T. Regularization and variable selection via the elastic net[J].

Journal of the royal statistical society: series B (statistical methodology), 2005, 67(2): 301-320.



Elastic net
• Zou and Hastie (2005) introduced the elastic net penalty

�
pX

j=1

�
↵�2

j + (1� ↵) |�j |
�

a di↵erent compromise between ridge and lasso.



Elastic net



Minimax concave penalty (MCP)

• Zhang(2010) proposed MCP penalty

P (�|;�, a) =
(

�|�|� |�|2
2a , if |�|  a�

a�2

2
, if |�| > a�

P 0
�,a(|�|;�, a) =

⇢
�� |�|

a , if |�|  a�,
0, if |�| > a�.

Reference: Zhang C H. Nearly unbiased variable selection under minimax concave penalty[J].

The Annals of statistics, 2010, 38(2): 894-942.



Group selection in high dimensional models

• Group selection

group lasso, 2-norm group bridge, 2-norm group SCAD,
2-norm group MCP,...

• Bi-level selection

concave 1-norm group penalties, composite penalties,
additive penalties.

Reference: Huang J, Breheny P, Ma S. A selective review of group selection in

high-dimensional models[J]. Statistical science: a review journal of the Institute of

Mathematical Statistics, 2012, 27(4).



Group lasso

• Yuan and Lin (2006) propose group LASSO penalty

For a column vector v 2 Rd with d � 1 and a positive definite
matrix R, denote kvk2 = (v0v)1/2 and kvkR = (v0Rv)1/2 . Let
� = (�0

1, . . . ,�
0
J)

0 , where �j 2 Rdj . The group LASSO solution �̂(�)
is defined as a minimizer of

1

2n

������
y �

JX

j=1

Xj�j

������

2

2

+ �
JX

j=1

cj k�jkRj
(2.1)

where � � 0 is the penalty parameter and Rj ’s are dj ⇥ dj positive
definite matrices. Here the cj ’s in the penalty are used to adjust for
the group sizes. A reasonable choice is cj =

p
dj . Because ( 2.1 ) is

convex, any local minimizer of ( 2.1) is also a global minimizer and is
characterized by the Karush-Kuhn-Tucker conditions as given in Yuan
and Lin(2006).



Group lasso



Concave 2-norm group selection

• A more general class of group selection methods can be
based on the criterion

1

2n

������
y �

JX

j=1

Xj�j

������

2

2

+
JX

j=1

⇢
⇣
k�jkRj

; cj�, �
⌘

(2.3)

where ⇢ (t; cj�, �) is concave in t. Here � is an additional
tuning parameter that may be used to modify ⇢.

• Specifically, for ⇢(t;�) = �|t|, the group lasso penalty can

be written as �cj k�jkRj
= ⇢

⇣
k�jkRj

; cj�
⌘
.



Concave 2-norm group selection

Other penalty functions could be used instead.

• (a) the bridge penalty with

⇢(x;�, �) = �|x|� , 0 < �  1

(Frank and Friedman, 1993);

• (b) the SCAD penalty with

⇢(x;�, �) = �

Z |x|

0

min(1, (� � t/�)+/(� � 1)} dt, � > 2

(Fan and Li, 2001; Fan and Peng, 2004 ), where for any
a 2 R, a+ denotes its positive part, that is, a+ = a1(a�0);

• (c) the minimax concave penalty (MCP) with

⇢(x;�, �) = �
R |x|
0

(1� t/(��))+dt, � > 1 (Zhang, 2010a).



Concave 1-norm group penalties
• The 1-norm group bridge applies a bridge penalty to the `1
norm of a group, resulting in the criterion

1

2n

������
y �

JX

j=1

Xj�j

������

2

2

+ �
JX

j=1

cj k�jk�1

where � > 0 is the regularization parameter, � 2 (0, 1) is
the bridge index and {cj} are constants that adjust for the
dimension of group j. For models with standardized
variables, a reasonable choice is cj = |dj |� .

• General penalized criterion

1

2n

������
y �

JX

j=1

Xj�j

������

2

2

+
JX

j=1

⇢
�
k�jk1 ; cj�, �

�



Composite penalties

• The composite MCP uses the criterion

1

2n

���y �
PJ

j=1
Xj�j

���
2

2

+
PJ

j=1
⇢�,�o

⇣Pdj
k=1

⇢�,�I (|�jk|)
⌘



Additive penalties

• Another approach to achieving bi-level selection is to add
an `1 penalty to the group lasso (Wu and Lange, 2008;
Friedman, Hastie and Tibshirani, 2010).

• Friedman, Hastie and Tibshirani (2010) proposed sparse
group lasso

min
�2Rp

0

@
�����y �

LX

l=1

X`�`

�����

2

2

+ �1

LX

`=1

k�`k2 + �2k�k1

1

A (2)

where � = (�1, �2, . . . , �`) is the entire parameter vector. For notational simplicity we

omit the weights
p

p`. Expression (2) is the sum of convex functions and is therefore

convex. When �2 = 0, criterion (2) reduces to the group lasso.



adSGL

• Fang, Wang and Ma(2015) propose adaptive sparse group
lasso

min

8
<

:
1

2

������
y �

JX

j=1

Xj�
(j)

������

2

2

+ �(1� ↵)
JX

j=1

wj

����(j)
���
2

+ �↵
JX

j=1

⇠(j)T
����(j)

���

9
=

;

where W = (w1, · · · , wJ )
T 2 RJ

+
is the group weight vector,

⇠T =
�
⇠(1)T , · · · , ⇠(J)T

�
=

⇣
⇠
(1)

1
, · · · , ⇠(1)p1 , · · · , ⇣(J)

1
, · · · , ⇠(J)

p,J

⌘
2 Rp

+
denote

the individual weights, and � 2 R+ is the tuning parameter. For di↵erent

groups, the penalty level can be di↵erent. By adopting lower penalty for

large coe�cients while higher penalty for small ones, we expect this to be

able to improve variable selection accuracy and reduce estimation bias.



adSGL
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Introduction

Background

Lung cancer accounts for around 28% of cancer-related deaths
worldwide.

The chances of survival are narrow and at the early stages, it
cannot be detected due to the presence of little or no symptoms.

More than 60% of patients have their symptoms diagnosed at the
later stages with longevity of less than 10%.
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Introduction

Detection techniques

Symptoms in the last stage of lung cancer: persistent cough,
blood filled sputum, pain in the chest, change in the voice pattern
and recurrent pneumonia or bronchitis.
The techniques used for its detection and diagnosis is
expensive.The current techniques used are:

Chest X-ray
Sputum Cytology
Pulmonary Function Tests (PFT)
Chest Tomography
Bronchoscopy with Biopsy
...
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Introduction

History of breath analysis

Since ancient times, physicians have known that a person’s breath
gives an indication of one’s health conditions.
Collection of a breath sample is much safer and easier compared
to that of collecting blood samples or urine samples.
The compounds present in the breath can be detected and
correlated to various diseases.
During the last few years, the analysis of exhaled breath has been
proposed as a novel option for an early detection of lung cancer
(Mazzone et al. (2007), Peng et al. (2009), Mazzone et al.
(2012)).

Nov. 2019 5 / 29



Introduction

Exhaled breath VOC analyzers

Exhaled breath contains a complex mixture of several hundreds of
volatile organic compounds (VOCs).It has been shown that the
features obtained from VOCs can be used as a non-invasive
marker of lung cancer.

GC and Mass Spectrometry (GC-MS)
Electronic Noses
Quartz Microbalance
Colorimetry
Ion Mobility Spectrometry (IMS)
Cyranose 320
NANO-NOSE
...
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Introduction

Colorimetric Sensor Array (CSA)

Colorimetric sensor array (CSA)(Janzen et al. (2006)) is
composed of chromogenic reagents printed on a disposable
cartridge.
Third generation (2013) CSA

128 chemically sensitive colorants impregnated on a disposable
cartridge.
Improved Nanoporous matrix for chemically reactive colorants: high
porosity and enormous surface area at nanoscale results in
enhanced sensitivity to lung cancer indicators
New categories of chemical indicators have expanded the breadth
of chemical sensitivity of the array
Robotically printed array – higher precision, signal/noise and
sensitivity
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Introduction

CSA Breath Data

The measurement from the sensor is a change in the colors of its
elements every tidal volume (approximately 500 mL) breath air
crossed.
Study subjects were recruited prospectively from outpatient clinics
at the Cleveland Clinic, US.

Tidal volume breathing for 5 minutes;

Exhaled breath drawn over the sensor array;

Images were converted to numerical values
in the red, green, blue spectra, and 4
ultraviolet spectra.

Totally 128 (the number of colorants) ⇥ 7(
changes in the red, green, blue, and 4
ultra-color spectrum of each colorant)
= 896 groups.
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Introduction

Data Examples

Figure: An example of the observed log intensities for one subject. Each image of the sensor
was converted to numerical values for changes in the red, green, blue, and 4 ultra-color spectrum
of each colorant.
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Introduction

Introduction

Grouping structures.
Group variable selection problem, see group Lasso (Yuan and Lin

(2006), Meier et al. (2008)),CAP(Zhao et al. (2006)), group MCP (

Wang et al. (2008) , Huang et al. (2012)), group bridge(Huang et al.

(2009)) and references therein.

Encourage smoothness of coefficients.
Features are ordered in some meaningful ways, see fused Lasso

(Tibshirani et al. (2005)), smooth-Lasso(Hebiri and Van (2011)),

sparse Laplacian shrinkage (SLS) method(Huang et al. (2011)),

spline-lasso (Guo et al. (2016)).
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Methodology The Model Setting and Methodology

The Model Setting

n subjects, (zi , xi , yi ; i = 1, · · · , n), where zi 2 Rq0 is a
q0-dimensional vector , xi 2 Rq is a q-dimensional vector and
yi 2 {0, 1} is a binary response variable.

zi includes intercept and other scaler vectors.

xi can be divided into J groups, which means there exist grouping
structures: X = (x1, · · · , xn)> with xi = (x>

i,1, · · · , x>
i,J)

> for
i = 1, · · · , n.

Log-likelihood function of linear logistic regression models:

`(�) =
nX

i=1

{yi log(p�(xi , zi) + (1 � yi)log(1 � p�(xi , zi))},
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Methodology The Model Setting and Methodology

Objective Function

Q(�) = �1
n
`(�) +

JX

j=1

PMCP(
���j

�� ;
p

qj�1, �) +
JX

j=1

P2(�j ,�2)

The first �1-penalty is the usual group minimax concave penalty
(group MCP) to select groups of features.

The second �2-penalty encourage smoothness of coefficients.
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Methodology The Model Setting and Methodology

Group spline-penalty (gsp-penalty)

qj�1X

m=2

(�(2)
m �j)

2

�m�j =: (�j,m+1 � �j,m),

�(2)
m �j =: (�m�j ��m�1�j) = �j,m+1 � 2�j,m + �j,m�1.

L2 penalty on the discrete version of the second derivatives of
coefficients

Set Lj as a (qj � 2)⇥ qj matrix with L
j

i,i = L
j

i,i+2 = 1, L
j

i,i+1 = �2
and L

j

i,l = 0 otherwise.

JX

j=1

P2(�j ,�2) =
JX

j=1

�2�
>
j

L
j>

L
j�j
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Methodology The Model Setting and Methodology

Group smooth-penalty (gsm-penalty)

pjX

m=2

(�j,m+1 � �j,m)
2

L2 penalty on the difference among closely located variables.

Set Lj as a qj ⇥ qj matrix with L
j

i,i = �1, L
j

i,i�1 = 1 and L
j

i,l = 0
otherwise

JX

j=1

P2(�j ,�2) =
JX

j=1

�2�
>
j

L
j>

L
j�j
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Methodology Computational algorithm

Algorithm

With majorization-minimization(MM) approach as before, we have

Q(�|e�) / v

2n
(eY � Z>�0 �

JX

j=1

X>
j
�j)

>(eY � Z>�0 �
JX

j=1

X>
j
�j)

+
JX

j=1

PMCP(
���j

�� ;
p

qj�1, �) +
JX

j=1

�2�
>
j

L
j>

L
j�j ,

where v = 1/4 and eY = e⌘ + (Y � p)/v is the pseudo-response vector.
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Methodology Computational algorithm

Algorithm
Proposition 1:
Given current estimate e�(m), define an artificial dataset (Y ⇤,X ⇤) by
Y ⇤ = (eY , 0(

P
J

j=1(qj�2)))
>, X ⇤ = (X ,L)>, where

L =

2

6664

p
�1n/vL1 0 · · · 0

0
p
�1n/vL2 · · · 0

...
... . . . ...

0 0 · · ·
p
�1n/vLJ

3

7775

Then

Q(�|e�) / v

2n
(Y ⇤ � Z>�0 � X ⇤�⇤)>(Y ⇤ � Z>�0 � X ⇤�⇤)

+
JX

j=1

PMCP(
���j

�� ;
p

qj�1, �).
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Simulation and Application Simulation

Simulation Setting

Scenario1 : The length of � is set to be 400. We divide � into 20
groups and qj = 20 for j = 1, 2, · · · , 20. In 3rd, 4th, 7th and 8th group,
the coefficients �js are non-zeros and chosen randomly in sequential
order from the sine function sin(t) where t 2 [0, 2⇡]. Xj are generated
from N(0,⌃). Two different covariance structures ⌃ are considered:
⌃ = I and ⌃ij = 0.5|i�j|. The numbers of observations in the training
set are set as n = 100 and 200, respectively.
Scenario2 : The setting of � is the same as in Scenario 1. X are
generated from N(0,⌃) and ⌃ij = ⇢|i�j|. The numbers of observations
in training set are set as n = 100, 200 and 300, respectively. We
consider the cases of weak, moderate, and strong correlations by
setting ⇢ = 0.2, 0.5, and 0.8, respectively.
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Simulation and Application Simulation

Table: Summary of performance measures for Scenario 1. Means with
standard errors (in parentheses) are obtained from 100 Monte Carlo
repetitions.

Method
Feature selection Prediction error

Sensitivity Specificity AUC ACC

⌃ = I , n=100
gMCP 0.403(0.266) 0.990(0.026) 0.663(0.096) 0.654(0.056)

gsmMCP 0.917(0.118) 0.834(0.191) 0.901(0.030) 0.829(0.029)
gspMCP 0.960(0.092) 0.879(0.126) 0.910(0.036) 0.840(0.037)

⌃ = I , n=200
gMCP 0.833(0.163) 0.998(0.012) 0.827(0.040) 0.754(0.034)

gsmMCP 0.980(0.068) 0.955(0.101) 0.928(0.019) 0.853(0.023)
gspMCP 0.993(0.043) 0.969(0.067) 0.956(0.015) 0.888(0.022)

⌃ij = 0.5|i�j| , n=100
gMCP 0.430(0.266) 0.989(0.026) 0.679(0.094) 0.665(0.063)

gsmMCP 0.902(0.150) 0.892(0.144) 0.926(0.040) 0.857(0.043)
gspMCP 0.950(0.107) 0.915(0.106) 0.925(0.040) 0.857(0.042)

⌃ij = 0.5|i�j| , n=200
gMCP 0.820(0.185) 0.999(0.009) 0.839(0.040) 0.765(0.035)

gsmMCP 0.985(0.060) 0.933(0.116) 0.959(0.017) 0.892(0.025)
gspMCP 0.983(0.064) 0.969(0.059) 0.968(0.016) 0.906(0.024)
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Simulation and Application Simulation

Table: Summary of performance measures for Scenario 2.

Sample size Method
Feature selection Prediction error

Sensitivity Specificity AUC ACC

⇢ = 0.2
100 gMCP 0.427(0.264) 0.988(0.030) 0.675(0.093) 0.663(0.056)

gsmMCP 0.958(0.101) 0.813(0.208) 0.924(0.031) 0.854(0.033)
gspMCP 0.927(0.119) 0.942(0.079) 0.923(0.033) 0.854(0.035)

200 gMCP 0.840(0.157) 0.999(0.009) 0.837(0.040) 0.764(0.034)
gsmMCP 0.988(0.055) 0.949(0.096) 0.952(0.017) 0.882(0.023)
gspMCP 0.978(0.072) 0.989(0.030) 0.962(0.016) 0.897(0.023)

⇢ = 0.5
100 gMCP 0.475(0.247) 0.989(0.027) 0.702(0.090) 0.684(0.056)

gsmMCP 0.973(0.086) 0.839(0.170) 0.945(0.028) 0.879(0.031)
gspMCP 0.968(0.085) 0.938(0.076) 0.942(0.032) 0.877(0.034)

200 gMCP 0.807(0.166) 0.999(0.006) 0.839(0.044) 0.765(0.039)
gsmMCP 0.990(0.049) 0.988(0.032) 0.974(0.012) 0.915(0.020)
gspMCP 0.985(0.060) 0.996(0.018) 0.972(0.013) 0.911(0.020)

⇢ = 0.8
100 gMCP 0.465(0.204) 0.999(0.009) 0.752(0.066) 0.713(0.042)

gsmMCP 0.940(0.118) 0.929(0.086) 0.947(0.031) 0.881(0.034)
gspMCP 0.960(0.092) 0.961(0.057) 0.957(0.028) 0.896(0.034)

200 gMCP 0.667(0.188) 1.000(0.000) 0.845(0.047) 0.771(0.041)
gsmMCP 0.973(0.079) 0.996(0.015) 0.984(0.015) 0.937(0.026)
gspMCP 0.975(0.075) 0.998(0.011) 0.977(0.013) 0.920(0.022)
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Simulation and Application Simulation

Simulation Setting

Scenario5 : The number of predictors is set to be 400 + n, where n is
the sample size of the training set. We divide the variable into 20
groups. And qj for j = 1, 2, · · · , 20 are not the same, where
q1 = q2 = 10, q3 = q4 = 15, q5 = 30, q6 = 40 + n and qj = 20 for
j = 7, 8, · · · , 20. The key difference between this scenario and
Scenario 4 is that, in this scenario, the number of variables in the sixth
group is larger than the sample size n. In 1st, 2nd and 6th group, the
coefficients �js are non-zeros and chosen randomly in sequential
order from the sine function sin(t) where t 2 [0, 2⇡].
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Simulation and Application Simulation

Table: Summary of performance measures for Scenario 5.

Feature selection Group selection Prediction error

Method Sensitivity Specificity Sensitivity Specificity AUC ACC

⌃ = I, p = 140, n = 100
gMCP 0.015(0.033) 0.986(0.030) 0.080(0.178) 0.985(0.032) 0.509(0.023) 0.587(0.063)

gsmMCP 0.978(0.034) 0.700(0.266) 0.880(0.181) 0.698(0.267) 0.935(0.022) 0.864(0.027)
gspMCP 0.980(0.031) 0.686(0.162) 0.893(0.163) 0.684(0.162) 0.903(0.034) 0.834(0.033)

⌃ij = 0.5|i�j|, p = 140, n = 100
gMCP 0.015(0.032) 0.978(0.046) 0.080(0.172) 0.976(0.049) 0.509(0.023) 0.595(0.072)

gsmMCP 0.972(0.040) 0.734(0.237) 0.850(0.214) 0.731(0.235) 0.952(0.021) 0.887(0.028)
gspMCP 0.977(0.038) 0.739(0.149) 0.877(0.205) 0.733(0.149) 0.907(0.034) 0.840(0.035)

⌃ = I, p = 240, n = 200
gMCP 0.015(0.021) 0.971(0.058) 0.130(0.183) 0.970(0.058) 0.511(0.023) 0.548(0.029)

gsmMCP 0.995(0.013) 0.481(0.272) 0.960(0.109) 0.479(0.270) 0.959(0.013) 0.891(0.019)
gspMCP 0.995(0.013) 0.605(0.198) 0.960(0.109) 0.601(0.198) 0.927(0.021) 0.852(0.024)

⌃ij = 0.5|i�j|, p = 240, n = 200
gMCP 0.012(0.022) 0.974(0.059) 0.100(0.192) 0.973(0.062) 0.511(0.023) 0.548(0.037)

gsmMCP 0.986(0.022) 0.668(0.271) 0.877(0.187) 0.666(0.269) 0.966(0.014) 0.901(0.023)
gspMCP 0.985(0.022) 0.802(0.100) 0.870(0.195) 0.796(0.102) 0.949(0.017) 0.878(0.024)

Nov. 2019 24 / 29



Simulation and Application Application to breath VOCs

Outline

1 Introduction

2 Methodology
The Model Setting and Methodology
Computational algorithm

3 Simulation and Application
Simulation
Application to breath VOCs

4 Discussion

Nov. 2019 25 / 29



Simulation and Application Application to breath VOCs

Totally 270 subjects, 92 of which are cancer and other 178 are
control.
Randomly choose 220 samples from data as training set and the
remaining samples are used as the testing set.
Regularization parameters are selected by 5-fold cross-validation.

Figure: ROC curves for three methods: training set (left), testing set (right).
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Simulation and Application Application to breath VOCs

Run the sample-splitting method 100 times.

Table: Performance results of 100 random partitions of the data (with
standard errors in parentheses).

Method Sensitivity Specificity ACC AUC

gMCP 0.456(0.213) 0.793(0.100) 0.679(0.064) 0.684(0.099)
gsmMCP 0.547(0.150) 0.766(0.098) 0.691(0.055) 0.730(0.071)
gspMCP 0.561(0.145) 0.762(0.097) 0.694(0.058) 0.728(0.071)
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Discussion

Discussion

Propose the group spline-penalty and group smooth-penalty.

Apply new methods on the analysis of breath VOCs and focus on
the prediction of lung cancer. The results show that the
estimations and predictions of the newly proposed methods are
more accurate comparing to group MCP for logistic regression.

An algorithm to solve this problem. Our algorithm possess the
descent property and leads to attractive convergence properties.
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Dimension Reduction Methods

• The methods that we have discussed so far in this chapter
have involved fitting linear regression models, via least
squares or a shrunken approach, using the original
predictors, X1, X2, . . . , Xp.

• We now explore a class of approaches that transform the
predictors and then fit a least squares model using the
transformed variables. We will refer to these techniques as
dimension reduction methods.

44 / 57



Dimension Reduction Methods: details

• Let Z1, Z2, . . . , ZM represent M < p linear combinations of
our original p predictors. That is,

Zm =
pX

j=1

�mjXj (1)

for some constants �m1, . . . ,�mp.
• We can then fit the linear regression model,

yi = ✓0 +
MX

m=1

✓mzim + ✏i, i = 1, . . . , n, (2)

using ordinary least squares.
• Note that in model (2), the regression coe�cients are given
by ✓0, ✓1, . . . , ✓M . If the constants �m1, . . . ,�mp are chosen
wisely, then such dimension reduction approaches can often
outperform OLS regression.
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• Notice that from definition (1),

MX

m=1

✓mzim =
MX

m=1

✓m

pX

j=1

�mjxij =
pX

j=1

MX

m=1

✓m�mjxij =
pX

j=1

�jxij ,

where

�j =
MX

m=1

✓m�mj . (3)

• Hence model (2) can be thought of as a special case of the
original linear regression model.

• Dimension reduction serves to constrain the estimated �j
coe�cients, since now they must take the form (3).

• Can win in the bias-variance tradeo↵.
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Principal Components Analysis

• PCA produces a low-dimensional representation of a
dataset. It finds a sequence of linear combinations of the
variables that have maximal variance, and are mutually
uncorrelated.

• Apart from producing derived variables for use in
supervised learning problems, PCA also serves as a tool for
data visualization.
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Principal Components Analysis: details

• The first principal component of a set of features
X1, X2, . . . , Xp is the normalized linear combination of the
features

Z1 = �11X1 + �21X2 + . . .+ �p1Xp

that has the largest variance. By normalized, we mean thatPp
j=1 �

2
j1 = 1.

• We refer to the elements �11, . . . ,�p1 as the loadings of the
first principal component; together, the loadings make up
the principal component loading vector,
�1 = (�11 �21 . . . �p1)T .

• We constrain the loadings so that their sum of squares is
equal to one, since otherwise setting these elements to be
arbitrarily large in absolute value could result in an
arbitrarily large variance.
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Computation of Principal Components

• Suppose we have a n⇥ p data set X. Since we are only
interested in variance, we assume that each of the variables
in X has been centered to have mean zero (that is, the
column means of X are zero).

• We then look for the linear combination of the sample
feature values of the form

zi1 = �11xi1 + �21xi2 + . . .+ �p1xip (1)

for i = 1, . . . , n that has largest sample variance, subject to
the constraint that

Pp
j=1 �

2
j1 = 1.

• Since each of the xij has mean zero, then so does zi1 (for
any values of �j1). Hence the sample variance of the zi1
can be written as 1

n

Pn
i=1 z

2
i1.
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Computation: continued

• Plugging in (1) the first principal component loading vector
solves the optimization problem

maximize
�11,...,�p1

1

n

nX

i=1

0

@
pX

j=1

�j1xij

1

A
2

subject to
pX

j=1

�2
j1 = 1.

• This problem can be solved via a singular-value
decomposition of the matrix X, a standard technique in
linear algebra.

• We refer to Z1 as the first principal component, with
realized values z11, . . . , zn1
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Further principal components

• The second principal component is the linear combination
of X1, . . . , Xp that has maximal variance among all linear
combinations that are uncorrelated with Z1.

• The second principal component scores z12, z22, . . . , zn2
take the form

zi2 = �12xi1 + �22xi2 + . . .+ �p2xip,

where �2 is the second principal component loading vector,
with elements �12,�22, . . . ,�p2.
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Further principal components: continued

• It turns out that constraining Z2 to be uncorrelated with
Z1 is equivalent to constraining the direction �2 to be
orthogonal (perpendicular) to the direction �1. And so on.

• The principal component directions �1, �2, �3, . . . are the
ordered sequence of right singular vectors of the matrix X,
and the variances of the components are 1

n times the
squares of the singular values. There are at most
min(n� 1, p) principal components.
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Proportion Variance Explained

• To understand the strength of each component, we are
interested in knowing the proportion of variance explained
(PVE) by each one.

• The total variance present in a data set (assuming that the
variables have been centered to have mean zero) is defined
as

pX

j=1

Var(Xj) =
pX

j=1

1

n

nX

i=1

x2ij ,

and the variance explained by the mth principal
component is

Var(Zm) =
1

n

nX

i=1

z2im.

• It can be shown that
Pp

j=1Var(Xj) =
PM

m=1Var(Zm),
with M = min(n� 1, p).
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Proportion Variance Explained: continued

• Therefore, the PVE of the mth principal component is
given by the positive quantity between 0 and 1

Pn
i=1 z

2
imPp

j=1

Pn
i=1 x

2
ij

.

• The PVEs sum to one. We sometimes display the
cumulative PVEs.
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How many principal components should we use?

If we use principal components as a summary of our data, how
many components are su�cient?

• No simple answer to this question, as cross-validation is not
available for this purpose.

• Why not?

• When could we use cross-validation to select the number of
components?

• the “scree plot” on the previous slide can be used as a
guide: we look for an “elbow”.
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Application to Principal Components Regression
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PCR was applied to two simulated data sets. The black, green,
and purple lines correspond to squared bias, variance, and test
mean squared error, respectively. Left: Simulated data from
slide 32. Right: Simulated data from slide 39.

52 / 57



Principal Component Regression

In each panel, the irreducible error Var() is shown as a
horizontal dashed line. Left: Results for PCR. Right: Results for
lasso (solid) and ridge regression (dotted). The x-axis displays
the shrinkage factor of the coeffi cient estimates, defined as the
2 norm of the shrunken coefficient estimates divided by the 2

norm of the least squares estimate.



Choosing the number of directions M
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Left: PCR standardized coe�cient estimates on the Credit

data set for di↵erent values of M . Right: The 10-fold cross
validation MSE obtained using PCR, as a function of M .
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Partial Least Squares

• PCR identifies linear combinations, or directions, that best
represent the predictors X1, . . . , Xp.

• These directions are identified in an unsupervised way, since
the response Y is not used to help determine the principal
component directions.

• That is, the response does not supervise the identification
of the principal components.

• Consequently, PCR su↵ers from a potentially serious
drawback: there is no guarantee that the directions that
best explain the predictors will also be the best directions
to use for predicting the response.
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Partial Least Squares: continued

• Like PCR, PLS is a dimension reduction method, which
first identifies a new set of features Z1, . . . , ZM that are
linear combinations of the original features, and then fits a
linear model via OLS using these M new features.

• But unlike PCR, PLS identifies these new features in a
supervised way – that is, it makes use of the response Y in
order to identify new features that not only approximate
the old features well, but also that are related to the
response.

• Roughly speaking, the PLS approach attempts to find
directions that help explain both the response and the
predictors.
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Partial least square
What optimization problem is partial least squares solving? Since it

uses the response y to construct its directions, its solution path is a
nonlinear function of y. It can be shown (Exercise 3.15 ) that partial
least squares seeks directions that have high variance and have high
correlation with the response, in contrast to principal components
regression which keys only on high variance (Stone and Brooks, 1990;
Frank and Friedman, 1993 ). In particular, the m th principal
component direction vm solves:

max↵ Var(X↵)
subject to k↵k = 1,↵TSv` = 0, ` = 1, . . . ,m� 1

(3.63)

where S is the sample covariance matrix of the xj . The conditions
↵TSv` = 0 ensures that zm = X↵ is uncorrelated with all the previous
linear combinations z` = Xv`. The m th PLS direction '̂m solves:

max↵ Corr2(y,X↵)Var(X↵)
subject to k↵k = 1,↵TS'̂` = 0, ` = 1, . . . ,m� 1

(3.64)



Partial least square



Details of Partial Least Squares

• After standardizing the p predictors, PLS computes the
first direction Z1 by setting each �1j in (1) equal to the
coe�cient from the simple linear regression of Y onto Xj .

• One can show that this coe�cient is proportional to the
correlation between Y and Xj .

• Hence, in computing Z1 =
Pp

j=1 �1jXj , PLS places the
highest weight on the variables that are most strongly
related to the response.

• Subsequent directions are found by taking residuals and
then repeating the above prescription.
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Summary

• Model selection methods are an essential tool for data
analysis, especially for big datasets involving many
predictors.

• Research into methods that give sparsity, such as the lasso
is an especially hot area.

• Later, we will return to sparsity in more detail, and will
describe related approaches such as the elastic net.
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