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SUMMARY 
We propose a new method for estimation in linear models. The 'lasso' minimizes the 
residual sum of squares subject to the sum of the absolute value of the coefficients being less 
than a constant. Because of the nature of this constraint it tends to produce some 
coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies 
suggest that the lasso enjoys some of the favourable properties of both subset selection and 
ridge regression. It produces interpretable models like subset selection and exhibits the 
stability of ridge regression. There is also an interesting relationship with recent work in 
adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and 
can be applied in a variety of statistical models: extensions to generalized regression models 
and tree-based models are briefly described. 

Keywords: QUADRATIC PROGRAMMING; REGRESSION; SHRINKAGE; SUBSET SELECTION 

1. INTRODUCTION 

Consider the usual regression situation: we have data (xi, yi), i = 1, 2, . . ., N, where 
x= (x,.. ., xP)T and yi are the regressors and response for the ith observation. 
The ordinary least squares (OLS) estimates are obtained by minimizing the residual 
squared error. There are two reasons why the data analyst is often not satisfied with 
the OLS estimates. The first is prediction accuracy: the OLS estimates often have low 
bias but large variance; prediction accuracy can sometimes be improved by shrinking 
or setting to 0 some coefficients. By doing so we sacrifice a little bias to reduce the 
variance of the predicted values and hence may improve the overall prediction 
accuracy. The second reason is interpretation. With a large number of predictors, we 
often would like to determine a smaller subset that exhibits the strongest effects. 

The two standard techniques for improving the OLS estimates, subset selection 
and ridge regression, both have drawbacks. Subset selection provides interpretable 
models but can be extremely variable because it is a discrete process - regressors are 
either retained or dropped from the model. Small changes in the data can result in 
very different models being selected and this can reduce its prediction accuracy. 
Ridge regression is a continuous process that shrinks coefficients and hence is more 
stable: however, it does not set any coefficients to 0 and hence does not give an easily 
interpretable model. 

We propose a new technique, called the lasso, for 'least absolute shrinkage and 
selection operator'. It shrinks some coefficients and sets others to 0, and hence tries to 
retain the good features of both subset selection and ridge regression. 
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University of Toronto, 12 Queen's Park Crescent West, Toronto, Ontario, M5S 1A8, Canada. 
E-mail: tibs@utstat.toronto.edu 
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In Section 2 we define the lasso and look at some special cases. A real data example is 
given in Section 3, while in Section 4 we discuss methods for estimation of prediction error 
and the lasso shrinkage parameter. A Bayes model for the lasso is briefly mentioned in 
Section 5. We describe the lasso algorithm in Section 6. Simulation studies are described in 
Section 7. Sections 8 and 9 discuss extensions to generalized regression models and other 
problems. Some results on soft thresholding and their relationship to the lasso are 
discussed in Section 10, while Section 11 contains a summary and some discussion. 

2. THE LASSO 

2.1. Definition 
Suppose that we have data (xi, yi), i = 1, 2, . . ., N, where xi = (xi, .. . X, )T are 

the predictor variables and yi are the responses. As in the usual regression set-up, we 
assume either that the observations are independent or that the yis are conditionally 
independent given the xys. We assume that the xy are standardized so that 2ixyl/N 

?, Eix2/N =1. 
Letting ,3 = (PI, . . ., pp)T, the lasso estimate (&, /3) is defined by 

(&3)=argminf (Yi-a-L 5 1X)2)} subject toZlfBll t. (1) 

Here t > 0 is a tuning parameter. Now, for all t, the solution for a is & y. We can 
assume without loss of generality that j 0 0 and hence omit a. 

Computation of the solution to equation (1) is a quadratic programming problem 
with linear inequality constraints. We describe some efficient and stable algorithms 
for this problem in Section 6. 

The parameter t > 0 controls the amount of shrinkage that is a,pplied to the 
estimates. Let fl be the full least squares estimates and let to SIfl. Values of 
t < to will cause shrinkage of the solutions towards 0, and some coefficients may be 
exactly equal to 0. For example, if t = to/2, the effect will be roughly similar to 
finding the best subset of size p/2. Note also that the design matrix need not be of full 
rank. In Section 4 we give some data-based methods for estimation of t. 

The motivation for the lasso came from an interesting proposal of Breiman (1993). 
Breiman's non-negative garotte minimizes 

N 2 

E (Yi- -E x) subject to Cj > 0, E Cj s t. (2) 

The garotte starts with the OLS estimates and shrinks them by non-negative factors 
whose sum is constrained. In extensive simulation studies, Breiman showed that the 
garotte has consistently lower prediction error than subset selection and is 
competitive with ridge regression except when the true model has many small non- 
zero coefficients. 

A drawback of the garotte is that its solution depends on both the sign and the 
magnitude of the OLS estimates. In overfit or highly correlated settings where the 
OLS estimates behave poorly, the garotte may suffer as a result. In contrast, the lasso 
avoids the explicit use of the OLS estimates. 
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Frank and Friedman (1993) proposed using a bound on the Lq-norm of the 
parameters, where q is some number greater than or equal to 0; the lasso corresponds 
to q = 1. We discuss this briefly in Section 10. 

2.2. Orthonormal Design Case 
Insight about the nature of the shrinkage can be gleaned from the orthonormal 

design case. Let X be the n x p design matrix with iUth entry xij, and suppose that 
XTX = I, the identity matrix. 

The solutions to equation (1) are easily shown to be 

pf = sign (1 ) (I6j -j y)I (3) 

where y is determined by the condition 2filjl = t. Interestingly, this has exactly the 
same form as the soft shrinkage proposals of Donoho and Johnstone (1994) and 
Donoho et al. (1995), applied to wavelet coefficients in the context of function 
estimation. The connection between soft shrinkage and a minimum LI-norm penalty 
was also pointed out by Donoho et al. (1992) for non-negative parameters in the 
context of signal or image recovery. We elaborate more on this connection in Section 
10. 

In the orthonormal design case, best subset selection of size k reduces to choosing 
the k largest coefficients in absolute value and setting the rest to 0. For some choice 
of X this is equivalent to setting fi, l if 1,871 > X and to 0 otherwise. Ridge 
regression minimizes 

N 2 

2 E Yi - flxyj +A P,2 

or, equivalently, minimizes 

?E (Yi-4jx,) subject to fi) < t (4) 

The ridge solutions are 
1 ^ 

where y depends on X or t. The garotte estimates are 

t P A2 ) t 

Fig. 1 shows the fonn of these functions. Ridge regression scales the coefficients by 
a constant factor, whereas the lasso translates by a constant factor, truncating at 0. 
The garotte function is very similar to the lasso, with less shrinkage for larger 
coefficients. As our simulations will show, the differences between the lasso and 
garotte can be large when the design is not orthogonal. 
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2.3. Geometry of Lasso 
It is clear from Fig. 1 why the lasso will often produce coefficients that are exactly 

0. Why does this happen in the general (non-orthogonal) setting? And why does it 
not occur with ridge regression, which uses the constraint ? fl2 K t rather than 
Elpl < t? Fig. 2 provides some insight for the case p = 2. 

The criterion E1 (y,- 6jXij)2 equals the quadratic function 

(,3-p 0) X ( X- 0) 

(plus a constant). The elliptical contours of this function are shown by the full curves 
in Fig. 2(a); they are centred at the OLS estimates; the constraint region is the rotated 
square. The lasso solution is the first place that the contours touch the square, and 
this will sometimes occur at a corner, corresponding to a zero coefficient. The picture 
for ridge regression is shown in Fig. 2(b): there are no corners for the contours to hit 
and hence zero solutions will rarely result. 

An interesting question emerges from this picture: can the signs of the lasso 
estimates be different from those of the least squares estimates ,j?? Since the variables 
are standardized, when p = 2 the principal axes of the contours are at + 450 to the 
co-ordinate axes, and we can show that the contours must contact the square in the 
same quadrant that contains fi. However, when p > 2 and there is at least moderate 
correlation in the data, this need not be true. Fig. 3 shows an example in three 
dimensions. The view in Fig. 3(b) confirms that the ellipse touches the constraint 
region in an octant different from the octant in which its centre lies. 

N LN 

o 1 2 3 4 5 0 1 2 3 4 5 

beta beta 

(a) (b) 

N N 

0 1 2 3 4 5 0 1 2 3 4 5 

beta beta 

(c) (d) 

Fig. 1. (a) Subset regression, (b) ridge regression, (c) the lasso and (d) the garotte: , form of 
coefficient shrinkage in the orthonormal design case; ..........., 45?-line for reference 
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(a) (b) 

Fig. 2. Estimation picture for (a) the lasso and (b) ridge regression 

(a) lb) 

Fig. 3. (a) Example in which the lasso estimate falls in an octant different from the overall least 
squares estimate; (b) overhead view 

Whereas the garotte retains the sign of each &, the lasso can change signs. Even in cases 
where the lasso estimate has the same sign vector as the garotte, the presence of the OLS 
estimates in the garotte can make it behave differently. The modjel E cj,fixy with con- 
straint E Cj ̂S t can be written as E fi1xy with constraint I fij/j 0 t. it for example 
p = 2 and fil > 2 > 0 then the effect would be to stretch the square in Fig. 2(a) 
horizontally. As a result, larger values of PI and smaller values of P2 will be favoured 
by the garotte. 

2.4. More on Two-predictor Case 
SupposeX that p = 2, and assume without loss of generality that the least squares 

estimates P7 are both positive. Then we can show that the lasso estimates are 
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C%J) 

2 3 4 5 6 

betal 

Fig. 4. Lasso ( ) and ridge regression ----) for the two-predictor example: the curves show the 
(P1, P2) pairs as the bound on the lasso or ridge parameters is varied; starting with the bottom broken 
curve and moving upwards, the correlation p is 0, 0.23, 0.45, 0.68 and 0.90 

= (fO - Y) (5) 

where y is chosen so that ,81 + ,82 = t. This formula holds for t M l + 820 and is valid 
even if the predictors are correlated. Solving for y yields 

(2 2 
(6) 

In contrast, the form of ridge regression shrinkage depends on the correlation of 
the predictors. Fig. 4 shows an example. We generated 100 data points from the 
model y = 6x1 + 3x2 with no noise. Here xl and x2 are standard normal variates with 
correlation p. The curves in Fig. 4 show the ridge and lasso estimates as the bounds 
on 216 + ,22 and 1fl1 I + 1f821 are varied. For all values of p the lasso estimates follow the 
full curve. The ridge estimates (broken curves) depend on p. When p = 0 ridge 
regression does proportional shrinkage. However, for larger values of p the ridge 
estimates are shrunken differentially and can even increase a little as the bound is 
decreased. As pointed out by Jerome Friedman, this is due to the tendency of ridge 
regression to try to make the coefficients equal to minimize their squared norm. 

2.5. Standard Errors 
Since the lasso estimate is a non-linear and non-differentiable function of the 

response values even for a fixed value of t, it is difficult to obtain an accurate estimate 
of its standard error. One approach is via the bootstrap: either t can be fixed or we 
may optimize over t for each bootstrap sample. Fixing t is analogous to selecting a 
best subset, and then using the least squares standard error for that subset. 

An approximate closed form estimate may be derived by writing the penalty Elfilj 
as E ,6/lflfI. Hence, at the lasso estimate /, we may approximate the solution by a 
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ridge regression of the form /* = (XTX + W-)-lXTy where W is a diagonal matrix 
with diagonal elements lfiil, W- denotes the generalized inverse of W and X is chosen 
so that E lI* - t. The covariance matrix of the estimates may then be approximated 
by 

(XTX + XWT) lXTX(XTX + xX-)-152, (7) 

where a2 is an estimate of the error variance. A difficulty with this formula is that it 
gives an estimated variance of 0 for predictors with f31 = 0. 

This approximation also suggests an iterated ridge regression algorithm for 
computing the lasso estimate itself, but this turns out to be quite inefficient. However, 
it is useful for selection of the lasso parameter t (Section 4). 

3. EXAMPLE -PROSTATE CANCER DATA 

The prostate cancer data come from a study by Stamey et al. (1989) that examined 
the correlation between the level of prostate specific antigen and a number of clinical 
measures, in men who were about to receive a radical prostatectomy. The factors 
were log(cancer volume) (lcavol), log(prostate weight) (lweight), age, log(benign 
prostatic hyperplasia amount) (lbph), seminal vesicle invasion (svi), log(capsular 
penetration) (lcp), Gleason score (gleason) and percentage Gleason scores 4 or 5 
(pgg45). We fit a linear model to log(prostate specific antigen) (lpsa) after first 
standardizing the predictors. 

C; 

0 

7 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

e 3~~~~~~~~ 

Fig. 5. Lasso shrinkage of coefficients in the prostate cancer example: each curve represents a 
coefficient (labelled on the right) as a function of the (scaled) lasso parameter s = tIE I &j (the intercept 
is not plotted); the broken line represents the model for s^ = 0.44, selected by generalized cross-validation 
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Fig. 5 shows the lasso estimates as a function of standardized bound s = t/lEl ?I. 
Notice that the absolute value of each coefficient tends to 0 as s goes to 0. In t1is 
example, the curves decrease in a monotone fashion to 0, but this does not always 
happen in general. This lack of monotonicity is shared by ridge regression and subset 
regression, where for example the best subset of size 5 may not contain the best 
subset of size 4. The vertical broken line represents the model for s = 0.44, the 
optimal value selected by generalized cross-validation. Roughly, this corresponds to 
keeping just under half of the predictors. 

Table 1 shows the results for the full least squares, best subset and lasso 
procedures. Section 7.1 gives the details of the best subset procedure that was used. 
The lasso gave non-zero coefficients to lcavol, lweight and svi; subset selection chose 
the same three predictors. Notice that the coefficients and Z-scores for the selected 
predictors from subset selection tend to be larger than the full model values: this is 
common with positively correlated predictors. However, the lasso shows the opposite 
effect, as it shrinks the coefficients and Z-scores from their full model values. 

The standard errors in the penultimate column were estimated by bootstrap 
resampling of residuals from the full least squares fit. The standard errors were 
computed by fixing s at its optimal value 0.44 for the original data set. Table 2 

TABLE 1 
Results for the prostate cancer example 

Predictor Least squares results Subset selection results Lasso results 

Coefficient Standard Z-score Coefficient Standard Z-score Coefficient Standard Z-score 
error error error 

1 intcpt 2.48 0.07 34.46 2.48 0.07 34.05 2.48 0.07 35.43 
2 Icavol 0.69 0.10 6.68 0.65 0.09 7.39 0.56 0.09 6.22 
3 Iweight 0.23 0.08 2.67 0.25 0.07 3.39 0.10 0.07 1.43 
4 age -0.15 0.08 -1.76 0.00 0.00 0.00 0.01 0.00 
5 lbph 0.16 0.08 1.83 0.00 0.00 0.00 0.04 0.00 
6 svi 0.32 0.10 3.14 0.28 0.09 3.18 0.16 0.09 1.78 
7 lcp -0.15 0.13 -1.16 0.00 0.00 0.00 0.03 0.00 
8 gleason 0.03 0.11 0.29 0.00 0.00 0.00 0.02 0.00 
9 pgg45 0.13 0.12 1.02 0.00 0.00 0.00 0.03 0.00 

TABLE 2 
Standard error estimates for the prostate cancer example 

Predictor Coefficient Bootstrap standard error Standard error 
approxination (7) 

Fixed t Varying t 

1 intcpt 2.48 0.07 0.07 0.07 
2 Icavol 0.56 0.08 0.10 0.09 
3 Iweight 0.10 0.06 0.08 0.06 
4 age 0.00 0.04 0.05 0.00 
5 lbph 0.00 0.04 0.07 0.00 
6 svi 0.16 0.09 0.09 0.07 
7 lcp 0.00 0.03 0.07 0.00 
8 gleason 0.00 0.02 0.05 0.00 
9 pgg45 0.00 0.03 0.06 0.00 
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0 - 

Icavol lweight age Ibph svl Icp gleason pgg45 

Fig. 6. Box plots of 200 bootstrap values of the lasso coefficient estimates for the eight predictors in 
the prostate cancer example 

compares the ridge approximation formula (7) with the fixed t bootstrap, and the 
bootstrap in which t was re-estimated for each sample. The ridge formula gives a 
fairly good approximation to the fixed t bootstrap, except for the zero coefficients. 
Allowing t to vary incorporates an additional source of variation and hence gives 
larger standard error estimates. Fig. 6 shows box plots of 200 bootstrap replications 
of the lasso estimates, with s fixed at the estimated value 0.44. The predictors whose 
estimated coefficient is 0 exhibit skewed bootstrap distributions. The central 90% 
percentile intervals (fifth and 95th percentiles of the bootstrap distributions) all 
contained the value 0, with the exceptions of those for Icavol and svi. 

4. PREDICTION ERROR AND ESTIMATION OF t 

In this section we describe three methods for the estimation of the lasso parameter 
t: cross-validation, generalized cross-validation and an analytical unbiased estimate 
of risk. Strictly speaking the first two methods are applicable in the 'X-random' case, 
where it is assumed that the observations (X, Y) are drawn from some unknown 
distribution, and the third method applies to the X-fixed case. However, in real 
problems there is often no clear distinction between the two scenarios and we might 
simply choose the most convenient method. 

Suppose that 
Y= 1(X) +e 

where E(e) = 0 and var(E) = a2. The mean-squared error of an estimate '(X) is 
defined by 

ME = E{l,(X) -_X)2 

the expected value taken over the joint distribution of X and Y, with '(X) fixed. A 
similar measure is the prediction error of '(X) given by 

PE=E{Y- -(X)}2=ME+2. (8) 

We estimate the prediction error for the lasso procedure by fivefold cross- 
validation as described (for example) in chapter 17 of Efron and Tibshirani (1993). 
The lasso is indexed in terms of the normalized parameter s = t/l P,8, and the 
prediction error is estimated over a grid of values of s from 0 to 1 inclusive. The value 
s yielding the lowest estimated PE is selected. 
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Simulation results are reported in terms of ME rather than PE. For the linear 
models i(X) = X/3 considered in this paper, the mean-squared error has the simple 
form 

ME-= (3/3)TV(,3 /3) 

where V is the population covariance matrix of X. 
A second method for estimating t may be derived from a linear approximation to 

the lasso estimate. We write the constraint Elpjl < t as I f8/lIlj8 < t. This constraint 
is equivalent to adding a Lagrangian penalty X E fl/l,ij to the residual sum of 
squares, with X depending on t. Thus we may write the constrained solution ,3 as the 
ridge regression estimator 

/3= (XTX + XW-)-lXTy 

where W = diag(jf31I) and W- denotes a generalized inverse. Therefore the number of 
effective parameters in the constrained fit ,3 may be approximated by 

p(t) = tr{X(XTX + XW-)-lXT}. 

Letting rss(t) be the residual sum of squares for the constrained fit with constraint 
t, we construct the generalized cross-validation style statistic 

GCV(t) N1 rss(t) (10) 

Finally, we outline a third method based on Stein's unbiased estimate of risk. 
Suppose that z is a multivariate normal random vector with mean it and variance the 
identity matrix. Let a be an estimator of ,i, and write f = z + g(z) where g is an 
almost differential function from RP to RP (see definition 1 of Stein (1981)). Then 
Stein (1981) showed that 

/ ~~~p 
A ts Ipp1 I p+E lg(Z) 1 12 + 2 Edgildz,)(1 

We may apply this result to the lasso estimator (3). Denote the estimated standard 
error of f by T = a/VN, where &2 = E (yi - yi)2/(N - p). Then the f7/Ti are (condi- 
tionally on X) approximately independent standard normal variates, and from 
equation (11) we may derive the formula 

R{f(y)} p - 2 #(j; I7/TI <Y) + E max(I8/TI, Y)2} 

as an approximately unbiased estimate of the risk or mean-square error E{,3(y) - 
3}2, where P8(y) = sign(p,8)(fi/I- y)+ Donoho and Johnstone (1994) gave a 
similar formula in the function estimation setting. Hence an estimate of y can be 
obtained as the minimizer of R{/3(y)}: 
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y= arg miny>O[R {I6(y))]. 

From this we obtain an estimate of the lasso parameter t: 

t 
- 

Although the derivation of t^ assumes an orthogonal design, we may still try to use 
it in the usual non-orthogonal setting. Since the predictors have been standardized, 
the optimal value of t is roughly a function of the overall signal-to-noise ratio in the 
data, and it should be relatively insensitive to the covariance of X. (In contrast, the 
form of the lasso estimator is sensitive to the covariance and we need to account for it 
properly.) 

The simulated examples in Section 7.2 suggest that this method gives a useful 
estimate of t. But we can offer only a heuristic argument in favour of it. Suppose that 
XTX = V and let Z = XV-1/2, 0 = 3V-1/2. Since the columns of X are standardized, 
the region ElfjI < t differs from the region E2f3jl <, t in shape but has roughly the 
same-sized marginal projections. Therefore the optimal value of t should be about 
the same in each instance. 

Finally, note that the Stein method enjoys a significant computational advantage 
over the cross-validation-based estimate of t. In our experiments we optimized over a 
grid of 15 values of the lasso parameter t and used fivefold cross-validation. As a 
result, the cross-validation approach required 75 applications of the model optim- 
ization procedure of Section 6 whereas the Stein method required only one. The 
requirements of the generalized cross-validation approach are intermediate between 
the two, requiring one application of the optimization procedure per grid point. 

5. LASSO AS BAYES ESTIMATE 

The lasso constraint EI6il < t is equivalent to the addition of a penalty term X Ib,I4 
to the residual sum of squares (see Murray et al. (1981), chapter 5). Now lfjl is 
proportional to the (minus) log-density of the double-exponential distribution. As a 
result we can derive the lasso estimate as the Bayes posterior mode under inde- 
pendent double-exponential priors for the f,js, 

f(,Bj)- exp -) 

with r= 1/X. 
Fig. 7 shows the double-exponential density (full curve) and the normal density 

(broken curve); the latter is the implicit prior used by ridge regression. Notice how 
the double-exponential density puts more mass near 0 and in the tails. This reflects 
the greater tendency of the lasso to produce estimates that are either large or 0. 

6. ALGORITHMS FOR FINDING LASSO SOLUTIONS 

We fix t > 0. Problem (1) can be expressed as a least squares problem with 2P 
inequality constraints, corresponding to the 2P different possible signs for the P,s. 
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-4 -2 0 2 4 

beta 

Fig. 7. Double-exponential density ( ~) and normnal density (-----:the fonmer is the iInplicit 
prior used by the lasso; the latter by ridge regression 

Lawson and Hansen (1974) provided the ingredients for a procedure which solves the 
linear least squares problem subject to a general linear inequality constraint G'3 <, h. 
Here G is an m x p matrix, corresponding to m linear inequality constraints on the p- 
vector ,3. For our problem, however, m = 2P may be very large so that direct 
application of this procedure is not practical. However, the problem can be solved by 
introducing the inequality constraints sequentially, seeking a feasible solution 
satisfying the so-called Kuhn-Tucker conditions (Lawson and Hansen, 1974). We 
outline the procedure below. 

Let g(,3) = v jN Y-ytl)2, and let 6s, i-=1, 2, . . ., 2P be the p-tuples of the 
form ( 1, I 1, ... ., ? 1). Then the condition Elpjl < t iS equivalent to jT,3 <, t 
for all i. For a given /3, let E ={iL 6iT,l = t} and 5 =i 5I T,X3 < t}. The set E iS the 
equality set, corresponding to those constraints which are exactly met, whereas S is 
the slack set, corresponding to those constraints for which equality does not hold. 
Denote by GE the matrix whose rows are 6i for i E E. Let 1 be a vector of Is of length 
equal to the number of rows of GE.^ 

T'he following algorithm starts with E = {io} where 6i,, sign('3, ,l being the 
overall least squares estimate. It solves the least squares problem subject to 15,O,B <' t 
and then checks whether sIl8il <, t. If so, the computation is complete; if not, the 
violated constraint is added to E and the process is continued until Elpjl <, t. 

Here is an outline of the algorithm. 

001~~~~~~~A 1 

(a) Start with E= {io} where 6i= sign(W), T being the overall least squares 
estimate. 

(b) Find ,3 to minimize g(3) subject to GE/3 <, tl. 

(c) While {Elpjl > t},9 

(d) add i to the set E where bi = sign(,3. Find ,B to minimize g(,3 subject to 
GE/3 < t 1 

T'his procedure must always converge in a finite number of steps since one element 
is added to the set E at each step, and there is a total of 2P elements. The final iterate 
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TABLE 3 
Results for example It 

Method Median mean-squared Average no. of Average s 
error 0 coefficients 

Least squares 2.79 (0.12) 0.0 
Lasso (cross-validation) 2.43 (0.14) 3.3 0.63 (0.01) 
Lasso (Stein) 2.07 (0.10) 2.6 0.69 (0.02) 
Lasso (generalized cross-validation) 1.93 (0.09) 2.4 0.73 (0.01) 
Garotte 2.29 (0.16) 3.9 
Best subset selection 2.44 (0.16) 4.8 
Ridge regression 3.21 (0.12) 0.0 

tStandard errors are given in parentheses. 

is a solution to the original problem since the Kuhn-Tucker conditions are satisfied 
for the sets E and S at convergence. 

A modification of this procedure removes elements from E in step (d) for which the 
equality constraint is not satisfied. This is more efficient but it is not clear how to 
establish its convergence. 

The fact that the algorithm must stop after at most 2P iterations is of little comfort 
if p is large. In practice we have found that the average number of iterations required 
is in the range (0.5p, 0.75p) and is therefore quite acceptable for practical purposes. 

A completely different algorithm for this problem was suggested by David Gay. 
We write each Pj as fit - P-, where fit and P- are non-negative. Then we solve the 
least squares problem with the constraints fij > 0, P-8 > 0 and X P8+ + Ej fi<t. In 
this way we transform the original problem (p variables, 2P constraints) to a new 
problem with more variables (2p) but fewer constraints (2p + 1). One can show that 
this new problem has the same solution as the original problem. 

Standard quadratic programming techniques can be applied, with the convergence 
assured in 2p + 1 steps. We have not extensively compared these two algorithms but 
in examples have found that the second algorithm is usually (but not always) a little 
faster than the first. 

7. SIMULATIONS 

7.1. Outline 
In the following examples, we compare the full least squares estimates with the 

lasso, the non-negative garotte, best subset selection and ridge regression. We used 
fivefold cross-validation to estimate the regularization parameter in each case. For 
best subset selection, we used the 'leaps' procedure in the S language, with fivefold 
cross-validation to estimate the best subset size. This procedure is described and 
studied in Breiman and Spector (1992) who recommended fivefold or tenfold cross- 
validation for use in practice. 

For completeness, here are the details of the cross-validation procedure. The best 
subsets of each size are first found for the original data set: call these So, S1, . . ., Sp 
(S0 represents the null nodel; since - = 0 the fitted values are 0 for this model.) 
Denote the full training set by T, and the cross-validation training and test sets by 
T - T' and TI, for v = 1, 2, . . ., 5. For each cross-validation fold v, we find the best 
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TABLE 4 
Most frequent models selected by the lasso 
(generalized cross-validation) in example I 

Model Proportion 

1245678 0.055 
123456 0.050 
1258 0.045 
1245 0.045 
13 others 
125 (and 5 others) 0.025 

subsets of each size for the data T- Tv: call these So, S,. . ., Sp. Let PEv(J) be the 
prediction error when Sv is applied to the test data TV, and form the estimate 

PE(J) PE(J). (12) 
v=1 

We find the J that minimizes PE(J) and our selected model is SJ. This is not the same 
as estimating the prediction error of the fixed models So, Si, . . ., SP and then 
choosing the one with the smallest prediction error. This latter procedure is described 
in Zhang (1993) and Shao (1992), and can lead to inconsistent model selection unless 
the cross-validation test set Tv grows at an appropriate asymptotic rate. 

7.2. Example 1 
In this example we simulated 50 data sets consisting of 20 observations from the 

model 

y = 3TX + as, 

where ,3 = (3, 1.5, 0, 0, 2, 0, 0, o)T and e is standard normal. The correlation 
between xi and xj was plisl with p = 0.5. We set a = 3, and this gave a signal-to-noise 
ratio of approximately 5.7. Table 3 shows the mean-squared errors over 200 
simulations from this model. The lasso performs the best, followed by the garotte 
and ridge regression. 

Estimation of the lasso parameter by generalized cross-validation seems to per- 
form best, a trend that we find is consistent through all our examples. Subset 

TABLE 5 
Most frequent models selected by all-subsets 

regression in example I 

Model Proportion 

125 0.240 
15 0.200 
1 0.095 
1257 0.040 
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TABLE 6 
Results for example 2t 

Method Median mean-squared Average no. of Average s 
error 0 coefficients 

Least squares 6.50 (0.64) 0.0 
Lasso (cross-validation) 5.30 (0.45) 3.0 0.50 (0.03) 
Lasso (Stein) 5.85 (0.36) 2.7 0.55 (0.03) 
Lasso (generalized cross-validation) 4.87 (0.35) 2.3 0.69 (0.23) 
Garotte 7.40 (0.48) 4.3 
Subset selection 9.05 (0.78) 5.2 
Ridge regression 2.30 (0.22) 0.0 

tStandard errors are given in parentheses. 

selection picks approximately the correct number of zero coefficients (5), but suffers 
from too much variability as shown in the box plots of Fig. 8. 

Table 4 shows the five most frequent models (non-zero coefficients) selected by the 
lasso (with generalized cross-validation): although the correct model (1, 2, 5) was 
chosen only 2.5% of the time, the selected model contained (1, 2, 5) 95.5% of the 
time. The most frequent models selected by subset regression are shown in Table 5. 
The correct model is chosen more often (24% of the time), but subset selection can 
also underfit: the selected model contained (1, 2, 5) only 53.5% of the time. 

7.3. Example 2 
The second example is the same as example 1, but with Pj = 0.85, Vj and a = 3; the 

signal-to-noise ratio was approximately 1.8. The results in Table 6 show that ridge 
regression does the best by a good margin, with the lasso being the only other 
method to outperform the full least squares estimate. 

7.4. Example 3 
For example 3 we chose a set-up that should be well suited for subset selection. 

The model is the same as example 1, but with 3 =(5, 0, 0, 0, 0, 0, 0, 0) and a = 2 so 
that the signal-to-noise ratio was about 7. 

The results in Table 7 show that the garotte and subset selection perform the best, 

TABLE 7 
Results for example 3t 

Method Median mean-squared Average no. of Average s 
error 0 coefficients 

Least squares 2.89 (0.04) 0.0 
Lasso (cross-validation) 0.89 (0.01) 3.0 0.50 (0.03) 
Lasso (Stein) 1.26 (0.02) 2.6 0.70 (0.01) 
Lasso (generalized cross-validation) 1.02 (0.02) 3.9 0.63 (0.04) 
Garotte 0.52 (0.01) 5.5 
Subset selection 0.64 (0.02) 6.3 
Ridge regression 3.53 (0.05) 0.0 

tStandard errors are given in parentheses. 
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TABLE 8 
Results for example 4t 

Method Median mean-squared Average no. of Average s 
error 0 coefficients 

Least squares 137.3 (7.3) 0.0 
Lasso (Stein) 80.2 (4.9) 14.4 0.55 (0.02) 
Lasso (generalized cross-validation) 64.9 (2.3) 13.6 0.60 (0.88) 
Garotte 94.8 (3.2) 22.9 
Ridge regression 57.4 (1.4) 0.0 

tStandard errors are given in parentheses. 

followed closely by the lasso. Ridge regression does poorly and has a higher mean- 
squared error than do the full least squares estimates. 

7.5. Example 4 
In this example we examine the performance of the lasso in a bigger model. We 

simulated 50 data sets each having 100 observations and 40 variables (note that best 
subsets regression is generally considered impractical for p > 30). We defined 
predictors xy = zy + zi where zy and zi are independent standard normal variates. 
This induced a pairwise correlation of 0.5 among the predictors. The coefficient 
vector was /3 (0, 0, .. . ,0, 2,2 .. ., 2, 0, 0, ... ., 0, 2,2 .. ., 2), there being 10 
repeats in each block. Finally we defined y = l3Tx + 15E where E was standard 
normal. This produced a signal-to-noise ratio of roughly 9. The results in Table 8 
show that the ridge regression performs the best, with the lasso (generalized cross- 
validation) a close second. 

The average value of the lasso coefficients in each of the four blocks of 10 were 
0.50 (0.06), 0.92 (0.07), 1.56 (0.08) and 2.33 (0.09). Although the lasso only produced 
14.4 zero coefficients on average, the average value of s (0.55) was close to the true 
proportion of Os (0.5). 

8. APPLICATION TO GENERALIZED REGRESSION MODELS 
The lasso can be applied to many other models: for example Tibshirani (1994) 

described an application to the proportional hazards model. Here we briefly explore 
the application to generalized regression models. 

Consider any model indexed by a vector parameter /3, for which estimation is 
carried out by maximization of a function l(J3); this may be a log-likelihood function 
or some other measure of fit. To apply the lasso, we maximize 1(,3) under the 
constraint ZIIj Ij < t. It might be possible to carry out this maximization by a general 
(non-quadratic) programming procedure. Instead, we consider here models for which 
a quadratic approximation to 1(a3) leads to an iteratively reweighted least squares 
(IRLS) procedure for computation of ,3. Such a procedure is equivalent to a 
Newton-Raphson algorithm. Using this approach, we can solve the constrained 
problem by iterative application of the lasso algorithm, within an IRLS loop. 
Convergence of this procedure is not ensured in general, but in our limited experience 
it has behaved quite well. 
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8.1. Logistic Regression 
For illustration we applied the lasso to the logistic regression model for binary 

data. We used the kyphosis data, analysed in Hastie and Tibshirani (1990), chapter 
10. The response is kyphosis (0 _ absent, 1 _ present); the predictors xl = age, x2 
number of vertebrae levels and X3 starting vertebrae level. There are 83 obser- 
vations. Since the predictor effects are known to be non-linear, we included squared 
terms in the model after centring each of the variables. Finally, the columns of the 
data matrix were standardized. 

The linear logistic fitted model is 

-2.64 + 0.83x, + 0.77x2 - 2.28x3 - 1.55x2l + 0.03x22 - 1.17x2. 

Backward stepwise deletion, based on Akaike's information criterion, dropped the 
x2-term and produced the model 

-2.64 + 0.84x1 + 0.80x2 - 2.28x3 - 1.54x2 - 1.16x23. 

The lasso chose s= 0.33, giving the model 

-1.42 + 0.03x, + 0.31x2 - 0.48x3 - 0.28x2. 

Convergence, defined as the I 13new8 )30d1 2 < 10-6, was obtained in five iterations. 

9. SOME FURTHER EXTENSIONS 
We are currently exploring two quite different applications of the lasso idea. One 

application is to tree-based models, as reported in LeBlanc and Tibshirani (1994). 
Rather than prune a large tree as in the classification and regression tree approach of 
Breiman et al. (1984), we use the lasso idea to shrink it. This involves a constrained 
least squares operation much like that in this paper, with the parameters being the 
mean contrasts at each node. A further set of constraints is needed to ensure that the 
shrunken model is a tree. Results reported in LeBlanc and Tibshirani (1994) suggest 
that the shrinkage procedure gives more accurate trees than pruning, while still 
producing interpretable subtrees. 

A different application is to the multivariate adaptive regression splines (MARS) 
proposal of Friedman (1991). The MARS approach is an adaptive procedure that 
builds a regression surface by sum of products of piecewise linear basis functions of 
the individual regressors. The MARS algorithm builds a model that typically 
includes basis functions representing main effects and interactions of high order. 
Give the adaptively chosen bases, the MARS fit is simply a linear regression onto 
these bases. A backward stepwise procedure is then applied to eliminate less 
important terms. 

In on-going work with Trevor Hastie, we are developing a special lasso-type 
algorithm to grow and prune a MARS model dynamically. Hopefully this will 
produce more accurate MARS models which also are interpretable. 

The lasso idea can also be applied to ill-posed problems, in which the predictor 
matrix is not full rank. Chen and Donoho (1994) reported some encouraging results 
for the use of lasso-style constraints in the context of function estimation via 
wavelets. 
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10. RESULTS ON SOFT THRESHOLDING 
Consider the special case of an orthonormal design XTX = I. Then the lasso 

estimate has the form 

,B = sign(f)(I6 Y-) (13) 

This is called a 'soft threshold' estimator by Donoho and Johnstone (1994); they 
applied this estimator to the coefficients of a wavelet transform of a function 
measured with noise. They then backtransformed to obtain a smooth estimate of the 
function. Donoho and Johnstone proved many optimality results for the soft 
threshold estimator and then translated these results into optimality results for 
function estimation. 

Our interest here is not in function estimation but in the coefficients themselves. 
We give one of Donoho and Johnstone's results here. It shows that asymptotically 
the soft threshold estimator (lasso) comes as close as subset selection to the 
performance of an ideal subset selector - one that uses information about the actual 
parameters. 

Suppose that 

Yi = ix' + Ei 

where Ei - N(0, a 2) and the design matrix is orthonormal. Then we can write 

p>? pj + azj (14) 

where zj - N(0, cr2). 
We consider estimation of ,B under squared error loss, with risk 

R(3 1 3) =EEl 1_- -32 

Consider the family of diagonal linear projections 

TDP(0, 3) = )y 1 fO, 1}. (15) 

This estimator either keeps or kills a parameter fl, i.e. it does subset selection. Now 
we incur a risk of a2 if we use flO, and f(j if we use an estimate of 0 instead. Hence the 
ideal choice of 3, is I(1flj1 > aT), i.e. we keep only those predictors whose true 
coefficient is larger than the noise level. Call the risk of this estimator RDP: of course 
this estimator cannot be constructed since the P,i are unknown. Hence RDP is a lower 
bound on the risk that we can hope to attain. 

Donoho and Johnstone (1994) proved that the hard threshold (subset selection) 
estimator f,B = I(,7(1?I > y) has risk 

R(/3, /3) s< (2 logp + 1) (a.2 + RDP). (16) 

Here y is chosen as a(2 log n)112, the choice giving smallest asymptotic risk. They also 
showed that the soft threshold estimator (13) with y = o(2 log n)112 achieves the same 
asymptotic rate. 
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These results lend some support to the potential utility of the lasso in linear 
models. However, the important differences between the various approaches tend to 
occur for correlated predictors, and theoretical results such as those given here seem 
to be more difficult to obtain in that case. 

1 1. DISCUSSION 

In this paper we have proposed a new method (the lasso) for shrinkage and 
selection for regression and generalized regression problems. The lasso does not 
focus on subsets but rather defines a continuous shrinking operation that can 
produce coefficients that are exactly 0. We have presented some evidence in this 
paper that suggests that the lasso is a worthy competitor to subset selection and ridge 
regression. We examined the relative merits of the methods in three different 
scenarios: 

(a) small number of large effects subset selection does best here, the lasso not 
quite as well and ridge regression does quite poorly; 

(b) small to moderate number of moderate-sized effects - the lasso does best, 
followed by ridge regression and then subset selection; 

(c) large number of small effects ridge regression does best by a good margin, 
followed by the lasso and then subset selection. 

Breiman's garotte does a little better than the lasso in the first scenario, and a little 
worse in the second two scenarios. These results refer to prediction accuracy. Subset 
selection, the lasso and the garotte have the further advantage (compared with ridge 
regression) of producing interpretable submodels. 

There are many other ways to carry out subset selection or regularization in least 
squares regression. The literature is increasing far too fast to attempt to summarize it 
in this short space so we mention only a few recent developments. Computational 
advances have led to some interesting proposals, such as the Gibbs sampling 
approach of George and McCulloch (1993). They set up a hierarchical Bayes model 
and then used the Gibbs sampler to simulate a large collection of subset models from 
the posterior distribution. This allows the data analyst to examine the subset models 
with highest posterior probability and can be carried out in large problems. 

Frank and Friedman (1993) discuss a generalization of ridge regression and subset 
selection, through the addition of a penalty of the form X YiflIq to the residual sum 
of squares. This is equivalent to a constraint of the form S2jl1q <, t; they called this 
the 'bridge'. The lasso corresponds to q = 1. They suggested that joint estimation of 
the Pjs and q might be an effective strategy but do not report any results. 

Fig. 9 depicts the situation in two dimensions. Subset selection corresponds to 
q -O 0. The value q = 1 has the advantage of being closer to subset selection than is 
ridge regression (q = 2) and is also the smallest value of q giving a convex region. 
Furthermore, the linear boundaries for q = 1 are convenient for optimization. 

The encouraging results reported here suggest that absolute value constraints 
might prove to be useful in a wide variety of statistical estimation problems. Further 
study is needed to investigate these possibilities. 
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(a) (b) (c) (d) (e) 

Fig. 9. Contours of constant value of jl2fi1q for given values of q: (a) q = 4; (b) q = 2; (c) q = 1; 
(d) q = 0.5; (e) q = 0.1 

12. SOFTWARE 

Public domain and S-PLUS language functions for the lasso are available at the 
Statlib archive at Carnegie Mellon University. There are functions for linear models, 
generalized linear models and the proportional hazards model. To obtain them, use 
file transfer protocol to lib.stat.cmu.edu and retrieve the file S/lasso, or send an 
electronic mail message to statlib@lib.stat.cmu.edu with the message send lasso from S. 
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