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a b s t r a c t

In the analysis of data with high-dimensional covariates and small sample sizes, dimension
reduction techniques have been extensively employed. Principal component analysis (PCA)
is perhaps the most popular dimension reduction technique. To remove noise effectively
and generate more interpretable results, the sparse PCA (SPCA) technique has been de-
veloped. In high dimension, the analysis of a single dataset often generates unsatisfactory
results. In a series of studies under the ‘‘regression analysis + variable selection’’ setting,
it has been shown that integrative analysis provides an effective way of pooling infor-
mation from multiple independent datasets and outperforms single-dataset analysis and
many alternative multi-datasets analyses, especially including the classic meta-analysis.
In this study, with multiple independent datasets, we propose conducting dimension
reduction using a novel iSPCA (integrative SPCA) approach. Penalization is adopted for
regularized estimation and selection of important loadings. Advancing from the existing
integrative analysis studies, we further impose contrasted penalties, which may generate
more accurate estimation/selection. Multiple settings on the similarity across datasets
are comprehensively considered. Consistency properties of the proposed approach are
established, and effective computational algorithms are developed. A wide spectrum of
simulations demonstrate competitive performance of iSPCA over the alternatives. Two sets
of data analysis further establish its practical applicability.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Data with high-dimensional covariates and small-to-moderate sample sizes abound. Extensive methodological and
theoretical studies have been conducted. In particular, dimension reduction techniques such as principal component analysis
(PCA), partial least squares (PLS), independent component analysis (ICA), and others, have been proposed. PCA is arguably
the most popular of all. It can assist in understanding underlying data structures, clustering analysis, regression analysis,
andmany other tasks. We refer to [7,13,15,18] and other publications for methodological, theoretical, and numerical studies
on PCA in high-dimensional settings. In many practical studies, it has been suggested that only a small subset of variables
are relevant, while others are ‘‘noise’’. To identify relevant variables and generate more interpretable results, the sparse PCA
(SPCA) technique has been developed, which applies regularized estimation to generate sparse loadings. In the literature,
methodological studies on SPCA include [6,12,16,24,27], theoretical studies include [5,17], and numerical studies include [2],
among others.
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Despite many promising successes, it is still often observed that results generated from analyzing a single dataset are
unsatisfactory. This can be partly seen from our numerical study. Although there may be multiple contributing factors, the
most important is perhaps the small sample size. For many scientific problems, there are multiple independent studies
with comparable settings, e.g., with the same set of variables measured on subjects with similar characteristics [3]. In a
series of studies under the ‘‘regression analysis + variable selection’’ settings [19,26], it has been shown that integrative
analysis, which jointly analyzes the raw data of multiple independent datasets, outperforms single-dataset analysis and
many other multi-datasets analyses especially including the classic meta-analysis, under which each dataset is analyzed
separately, and then summary statistics are pooled. Extensive methodological, theoretical, and numerical studies have been
conducted [10,11].

Motivated by the importance of PCA/SPCA in the dimension reduction analysis of high-dimensional data, strong the
need for improving over single-dataset analysis, and the success of integrative analysis under the ‘‘regression analysis +
variable selection’’ setting, we present here a novel approach and conduct the integrative SPCA (iSPCA) analysis of multiple
independent datasets. This study is related to, but improves upon, the existing ones in the following aspects. It is built on
the SPCA technique and extends it to the integrative analysis of multiple datasets. Significant challenges arise from the
‘‘interconnections’’ among datasets. This study belongs to the same integrative analysis paradigm as [26], with the goal
of improving estimation/selection results by pooling information from multiple independent datasets. However, in sharp
contrast with the existing integrative analysis studies, dimension reduction, which is as important as variable selection, is
conducted. This study can potentially pave the road to conducting integrative analysis based on other dimension reduc-
tion techniques. With these differences, significant methodological, theoretical, and numerical developments are needed
beyond the existing literature. Overall, this study provides a novel and useful new venue for analyzing high-dimensional
datasets.

The rest of the article is organized as follows. The proposed analysis, its theoretical properties, and computational
algorithms are described in Section 2. Numerical study, including simulation and data analysis, is conducted in Section 3
to demonstrate satisfactory finite-sample performance of the proposed analysis. The article concludes with a discussion in
Section 4. Additional technical details and numerical results are provided in the Appendix.

2. Methods

2.1. SPCA with a single dataset

For the analysis of a single dataset, the SPCA technique has beenwell developed; see, e.g., [16,24,27]. For the completeness
of this article and development of notations, below we briefly describe SPCA for a single dataset and refer to the literature
for more details.

Consider the data matrix X = [X1, . . . , Xn]d×n whose n columns are iid observations from a d-dimensional multivariate
normal distribution N (0, Σd). The covariance matrix Σd can be decomposed as Σd = UdΛdU⊤

d , where Λd is the diagonal
matrix of eigenvalues λ1 ≥ · · · ≥ λd and Ud = [u1, . . . , ud] is the matrix of the corresponding eigenvectors. The superscript
⊤ denotes matrix transpose. PCA can be achieved by conducting the singular value decomposition (SVD) of X . Suppose that
rank(X) = r , and denote the SVDof X as X = ÛrΩ̂V̂⊤

r , where Ûr = [û1, . . . , ûr ], V̂r = [v̂1, . . . , v̂r ], and Ω̂ = diag(ω̂1, . . . , ω̂r ).
The columns of Ûr are orthonormal, and so are the columns of V̂r . The singular values are ordered, i.e., ω̂1 ≥ · · · ≥ ω̂r . With
the connection between PCA and SVD, it can be easily shown that for all i ∈ {1, . . . , r}, ûi is the sample estimate of eigenvector
ui, and ω̂2

i /n is the sample estimate of eigenvalue λi. In addition, for any integer ℓ ∈ {1, . . . , r}, X̃ =
∑ℓ

i=1ω̂iûiv̂
⊤

i is the best
rank-ℓ matrix approximation of X . That is,

X̃ = argmin
X∗

[∥X − X∗
∥
2
F = tr{(X − X∗)(X − X∗)⊤}],

where the subscript ‘‘F ’’ denotes the Frobenius norm, ‘‘tr’’ denotes trace, and X∗ has rank ℓ.
We focus on the first principal component (PC). This is equivalent to finding the best rank-1 matrix approximation of X

under the Frobenius norm. Note that any d × n rank-1 matrix can be written as ŭṽ⊤, where ṽ is a unit-norm n-vector and ŭ
is a d-vector. Thus, estimating the first PC can be formulated as the following optimization problem:

argmin
ŭ,ṽ

∥X − ŭṽ⊤
∥
2
F .

Given the connection between PCA and SVD, we have ŭ = ω̂1û1 and ṽ = v̂1.
The standard PCA generates dense loadings, making interpretation challenging under high-dimensional settings. In

addition, under many practical scenarios, only a subset of variables are relevant. Motivated by such considerations, the SPCA
technique has been proposed, which induces sparse loadings by applying regularized estimation. The most popular SPCA
applies penalization [17,16], where the estimate is defined as

argmin
ŭ,ṽ

{∥X − ŭṽ⊤
∥
2
F + pen(ŭ)}, subject to ∥ṽ∥ = 1.
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Here, pen is the penalty function, and the most popular choice is perhaps Lasso. With a sparse ŭ, the corresponding sparse
loading vector is ũ = ŭ/∥ŭ∥.

2.2. Integrative analysis

In what follows, we conduct the integrative analysis of M independent datasets. To simplify notation, consider the
scenario where all datasets have the same set of variables. As shown, e.g., in [22], the analysis can be easily adapted to
accommodate the scenario where the datasets have overlapping but different sets of variables. Our goal is to conduct SPCA
with all M datasets simultaneously and to enhance the identification of important loadings and estimation. Integrative
analysis demands a certain level of similarity across datasets (in our case, similarity in the sets of important loadings);
otherwise, information borrowing across datasets will be unlikely. The proper selection of datasets can be achieved by,
e.g., analyzingmeta-data; this has beendiscussed in [3,22] andwill not be reiteratedhere. It is noted that, in published studies
when different datasets have completely different sets of important variables [26], i.e., the worst case scenario, integrative
analysis still performs competitively.

2.3. iSPCA

For each dataset m ∈ {1, . . . ,M}, assume that there are nm iid observations X (m)
1 , . . . , X (m)

nm from a d-dimensional
multivariate normal distribution N (0, Σ

(m)
d ). The covariance matrix Σ

(m)
d can be decomposed as

Σ
(m)
d = U (m)

d Λ
(m)
d U (m)⊤

d ,

where Λ
(m)
d is the diagonal matrix of eigenvalues λ

(m)
1 ≥ · · · ≥ λ

(m)
d , and U (m)

d = [u(m)
1 , . . . , u(m)

d ] is the matrix of the
corresponding eigenvectors. Denote

X (m)
= [X (m)

1 , . . . , X (m)
nm ]d×nm , Σ̂

(m)
d = X (m)X (m)⊤/nm.

In our SPCA analysis of theM datasets, as in single-dataset analysis, we focus on estimating theM first PCs. As the datasets
are generated independently, differences inevitably exist. Thus, following the same spirit as in published integrative analyses,
theM first PCs are not forced to be the same. Consider the objective function

L(ŭ(1)
1 , . . . , ŭ(M)

1 ) =

M∑
m=1

1
2nm

∥X (m)
− ŭ(m)

1 ṽ
(m)⊤
1 ∥

2
F + pen(ŭ(1)

1 , . . . , ŭ(M)
1 ), subject to ∥ṽ

(1)
1 ∥ = · · · = ∥ṽ

(M)
1 ∥ = 1

where notations have similar implications as in single-dataset analysis. With independence, the first term is the sum of M
individual terms. Note that the normalization by sample size is optional; it is not consistently used in published studies. Here
we conduct normalization to give all datasets ‘‘equal attention’’.

In SPCA, the selection of relevant variables with nonzero loadings (i.e., identification of the sparsity structure of loadings)
is of critical importance. With M datasets, M sparsity structures need to be considered. In integrative analysis, two generic
scenarios have been considered for sparsity structures [26]. The first is the homogeneity structure, which assumes that
multiple datasets have the same set of important variables (i.e., the same sparsity structure). The second is the heterogeneity
structure, which allows the M sets of important variables to be possibly different. The heterogeneity structure includes the
homogeneity structure as a special case and is more flexible. Thus in this study, we focus on the heterogeneity structure. For
the identification of relevant variables and regularized estimation, we first consider the penalty function

d∑
i=1

ρ

(
M∑

m=1

ρ(|ŭ(m)
i,1 |; µ1, a); 1, b

)
, (1)

where ŭ(m)
i,1 is the ith element of ŭ(m)

1 . Here, ρ is the minimax concave penalty (MCP) defined as

ρ(t; µ1, a) = µ1

∫ t

0
(1 − x/(µ1a))+dx

with derivative ρ̇(t; µ1, a) = µ1(1 − t/(µ1a))+ and (t)+ = max(0, t), regularization parameters a and b, and with tuning
parameterµ1; see, e.g., [25]. Hereweadopt the compositeMCP: the outer penalty determineswhether a variable is important
in any of the PCs; and for an important variable, the inner penalty determines in which dataset(s) it is important. For
integrative analysis under the ‘‘regression analysis + variable selection’’ framework, the composite MCP has been adopted
and shown to be effective [11]. Here we adopt it in a significantly different context. Note that the composite MCP can be
replaced by other composite and sparse group penalties which can also conduct two-level selection.
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2.4. iSPCA with contrasted penalization

With the composite MCP (and other composite and sparse group penalties), there is almost no account for the
relationships among datasets. Our exploratory analysis, which is partly shown in simulation below, suggests that although
the approach described above outperforms the classic meta-analysis and single-dataset analysis, there is still room for
improvement. For some practical data analyses, analyzing meta-data and/or comparing individual-dataset analysis results
may suggest a certain degree of similarity in not just the loadings’ sparsity structures but also their magnitudes/signs [3,22].
In addition, in some analyses [19], important variables with similar magnitudes/signs are of more interest, and hence it is
desirable to encourage the identification of such variables. In the following, we develop two approaches to address such
needs.

2.4.1. Magnitude-based contrasted penalization
When it is reasonable to expect/encourage the first PCs of the datasets to have loadings with similar magnitudes, we

propose imposing the followingmagnitude-based contrasted penalty in addition to the penalty function in (1):

µ2

2

d∑
i=1

∑
1≤ℓ<m≤M

(ŭ(m)
i,1 − ŭ(ℓ)

i,1)
2, (2)

where µ2 > 0 is a data-dependent tuning parameter. We refer to this approach as iSPCAM , where the subscript ‘‘M ’’
emphasizes magnitude.

This approach involves two penalties. The first is the composite MCP and has the same interpretation as described in the
above section. For the ith variable, the newly added penalty (2) encourages its loadings in different datasets to have similar
magnitudes. The degree of similarity is adjusted using the tuning parameter µ2. As an alternative to the ℓ2 penalty, we can
also penalize ℓ1 differences, which may generate estimates that are exactly equal. As we are mainly interested in similarity
as opposed to exact equality, we choose the ℓ2 penalty, which may be computationally simpler.

Shrinking the differences between parameter estimates has been considered in the literature under contexts different
from the present one. Relevant approaches include the fused penalization and Laplacian penalization. The ‘‘standard’’ fused
penalization demands a spatial structure and shrinks differences between adjacent parameters. In contrast, the proposed
approach considers all (m, ℓ) pairs.

There are more recent fused penalization methods [21,23], which also impose magnitude-based contrasted penalties.
However, they are under regression settings and used for the purpose of grouping. The Laplacian penalization demands
a degree of adjacency measure, which is used to adjust the level of penalty and does not exist for independent datasets. A
contrasted penalization approach similar to the proposed one has already been developed [19] under the ‘‘regression analysis
+ variable selection’’ framework. Note that under the present data setting, different PCs are allowed to have different sparsity
structures. That is, one variable may have a nonzero loading in one PC but a zero loading in another PC. In this case, the
magnitude-based penalty is still sensible: it shrinks the nonzero loading towards zero (or the other way around) and hence
encourages similarity.

2.4.2. Sign-based contrasted penalization
Under certain scenarios, it can be reasonable to expect/encourage the first PCs of the M datasets to have loadings with

similar signs. See, e.g., [11,19,26] for discussion. Note that, loosely speaking, similarity in signs is weaker than that in
magnitudes. Here we propose imposing the following sign-based contrasted penalty in addition to the penalty function in (1):

µ2

2

d∑
i=1

∑
1≤ℓ<m≤M

{sign(ŭ(m)
i,1 ) − sign(ŭ(ℓ)

i,1)}
2,

where µ2 > 0 is a data-dependent tuning parameter, and sign(t) = 0, 1, −1 depending whether t = 0, t > 0 or t < 0.
The interpretation of this penalty is similar to that of (2). We refer to this approach as iSPCAS , where the subscript ‘‘S’’

stands for sign. The sign-based penalty is not continuous, leading to challenges in optimization. To solve this problem, we
further propose the approximated penalty

µ2

2

d∑
i=1

∑
1≤ℓ<m≤M

⎛⎝ ŭ(m)
i,1√

ŭ(m)2
i,1 + τ 2

−
ŭ(ℓ)
i,1√

ŭ(ℓ)2
i,1 + τ 2

⎞⎠2

,

where τ > 0 is a small positive constant. Penalties based on the sign function (and its approximations) have been considered
in [1], but the data settings and analysis goals are quite different from the present study. To the best of our knowledge, sign-
based penalties have not been well adopted in integrative analysis, especially not in the context of dimension reduction.

Remarks. Note that estimates of the PCs are unique up to a sign. To avoid sign swamps across datasets, we set the loadings
with the largest absolute values to have a positive sign. For both iSPCAM and iSPCAS , computation of the second and other
downstream PCs can be conducted consecutively by keeping updating the data matrices [16]. In practical data analysis, the



K. Fang et al. / Journal of Multivariate Analysis 166 (2018) 1–16 5

number of PCs may also need to be determined. In single-dataset analysis, one approach is to select the number of PCs so
that a predetermined cumulative percentage of explained variance (CPEV) is reached. An alternative approach is to jointly
examine eigenvalues and variations of eigenvectors. Both approaches can be extended to the present setting. For example,
for each dataset, we can select the number of PCs to meet the CPEV criterion.

2.5. Statistical properties

Here we establish statistical properties of iSPCAS in high-dimensional settings. With a simpler contrasted penalty,
properties of iSPCAM can be established in a similar manner. We omit the details for iSPCAM here. Under iSPCAS , the overall
penalized objective function is:

L(ŭ(1)
1 , . . . , ŭ(M)

1 ) =

M∑
m=1

1
2nm

∥X (m)
− ŭ(m)

1 ṽ
(m)⊤
1 ∥

2
F +

d∑
i=1

ρ

(
M∑

m=1

ρ(|ŭ(m)
i,1 |; µ1, a); 1, b

)
+ (3)

µ2

2

d∑
i=1

∑
1≤ℓ<m≤M

⎛⎝ ŭ(m)
i,1√

ŭ(m)2
i,1 + τ 2

−
ŭ(ℓ)
i,1√

ŭ(ℓ)2
i,1 + τ 2

⎞⎠2

, subject to ∥ṽ
(1)
1 ∥ = · · · = ∥ṽ

(M)
1 ∥ = 1.

For a single dataset, the concept of consistency of PCA has been proposed in [7] and others. Specifically, let ūi be a sample-
based estimator for ui for i ∈ {1, . . . , d}. The direction ūi is consistent for its population counterpart ui if Angle(ūi, ui) =

arccos(|⟨ūi, ui⟩|)
p

−→ 0 as d → ∞, where ⟨·⟩ denotes the inner product of two vectors.
For the proposed analysis, we establish below that for each m ∈ {1, . . . ,M}, the principal component direction ũ(m)

1 =

ŭ(m)
1 /∥ŭ(m)

1 ∥ is consistent for u(m)
1 . The following conditions are assumed.

Condition 1. For m ∈ {1, . . . ,M}, X (m)
1 , . . . , X (m)

nm are iid observations from a d-dimensional multivariate normal distribution
N (0, Σ

(m)
d ). The eigenvalues of Σ

(m)
d satisfy

λ
(m)
1 ∼ dα(m)

, λ
(m)
2 ∼ dθ (m)

,

d∑
i=2

λ
(m)
i ∼ d, (4)

where θ (m)
∈ [0, α(m)) and α(m)

∈ (0, 1].

Condition 2. For m ∈ {1, . . . ,M}, denote A(m)
= {i ∈ {1, . . . , d} : u(m)

i,1 ̸= 0} where u(m)
i,1 is the ith element of u(m)

1 . Then
|A(m)

| = ⌊dβ(m)
⌋, where |A(m)

| is the cardinality of A(m), β (m)
∈ [0, 1] is a sparsity parameter, and ⌊dβ(m)

⌋ is the integer part of
dβ(m)

. Assume that maxi∈A(m) |u(m)
i,1 |

−1
∼ dη(m)/2, where η(m)

∈ [0, α(m)) and α(m) is the spike parameter.

Condition 3. H (m)
j ≡

∑d
i=2X

(m)⊤
j u(m)

i u(m)
i satisfies the mixing condition for all j ∈ {1, . . . , nm} and m ∈ {1, . . . ,M}.

Condition 4. µ1 = o{d(min(α(m)
−η(m))−κ)/2

} where κ ∈ (1 − min(α(m)),min(α(m)
− η(m)) − max(θ (m))) and µ2 = o(µ1).

Condition 5.
∑d

i=2λ
(m)2
i /(

∑d
i=2λ

(m)
i )2 → 0 as d → ∞, for all m ∈ {1, . . . ,M}.

The assumed conditions are mild and not stronger than their counterparts in single-dataset PCA studies. Specifically, the
normality assumption in Condition 1 is common for PCA and SPCA studies [5,15,17]. Condition (4) ensures that Σ

(m)
d has a

single component spike structure. In addition, the second eigenvalue λ
(m)
2 is bounded away from the first eigenvalue λ

(m)
1 .

The ranges of α(m) and θ (m) are the same as in [17] and other publications.
Condition 2 assumes that u(m)

1 is sparse and that the speed of the smallest element in u(m)
1 shrinking towards to 0 is slower

than d−η(m)/2. Define

Z (m)
j ≡ (z(m)

1,j , . . . , z(m)
d,j )

⊤
= (X (m)⊤

j u(m)
1 , . . . , X (m)⊤

j u(m)
d )⊤.

Then, for all j ∈ {1, . . . , nm},

H (m)
j = (h(m)

1,j , . . . , h
(m)
d,j )

⊤
=

d∑
i=2

z(m)
i,j u(m)

i .

To establish consistency, it is needed that the H (m)
j s have a negligible effect on the direction vector ũ(m)

1 .
Suppose that the H (m)

j s are iid N (0, ∆
(m)
d ), where ∆

(m)
d = (r (m)

kℓ )d×d . A sufficient condition under which their effect is
negligible is the following mixing condition of [8]:

∀ k̸=ℓ∈A(m) |r (m)
kℓ | ≤ r (m)1/2

kk r (m)1/2
ℓℓ ρ

(m)
|k−ℓ|,
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where ρ
(m)
t < 1 for all t > 1 and ρ

(m)
t ln(t) → 0, as t → ∞. Condition 4 controls the divergence speed of the tuning

parameters. Condition 5 has been referred to as the ϵ2-condition [7], and

ϵ
(m)
2 =

(
d∑

i=2

λ
(m)
i

)2/(
d

d∑
i=2

λ
(m)2
i

)

is the measure of sphericity for λ
(m)
2 , . . . , λ

(m)
d .

Properties of the iSPCAS estimates can be summarized as follows.

Theorem 1. Suppose that Conditions 1–4 hold. For each m ∈ {1, . . . ,M}, fix ṽ
(m)
1 at v̂

(m)
1 which is the first right singular vector

of X (m). Then ũ(m)
1 = ŭ(m)

1 /∥ŭ(m)
1 ∥ is consistent for u(m)

1 , with a convergence rate of dκ/2, where (ŭ(1)
1 , . . . , ŭ(M)

1 ) optimize (3) with
ṽ
(m)
1 = v̂

(m)
1 .

Theorem 1 establishes that with properly chosen tunings, there exists a dκ/2 consistent estimator for u(m)
1 for each

m ∈ {1, . . . ,M} as d → ∞. The rate of convergence is affected by the divergence speed of λ
(m)
1 and λ

(m)
2 as well as the

speed of the smallest element of u(m)
1 shrinking towards 0. More specifically, with a larger divergence rate of λ

(m)
1 , a lower

divergence rate of λ(m)
2 , and a lower convergence rate of the smallest element of u(m)

1 , the estimator has a higher convergence
rate. We can also fix ṽ

(m)
1 in a general way, and the consistency properties can be summarized as follows.

Theorem 2. Suppose that Conditions 1–5 hold. Suppose that û0,(m)
1 is consistent for u(m)

1 , with a convergence rate of dκ/2. For each
m ∈ {1, . . . ,M}, fix ṽ

(m)
1 at X (m)⊤û0,(m)

1 /∥X (m)⊤û0,(m)
1 ∥. Then ũ(m)

1,new = ŭ(m)
1,new/∥ŭ(m)

1,new∥ is consistent for u(m)
1 , with a convergence

rate of dκ/2, where (ŭ(1)
1,new, . . . , ŭ(M)

1,new) optimize (3) with fixed ṽ
(m)
1 .

The main difference between Theorems 1 and 2 is on how to choose ṽ
(m)
1 . In Theorem 1, we fix ṽ

(m)
1 as the first right

singular vector of X (m) for each m ∈ {1, . . . ,M}, while in Theorem 2, we obtain ṽ
(m)
1 based on a consistent estimator of u(m)

1 .
Theorems 1–2 suggest that we can take an iterative algorithm to optimize (3), and the scale vector ũ(m)

1 of ŭ(m)
1 is consistent

for u(m)
1 at every updating step.

2.6. Computation

Here we consider iSPCAS . The computational algorithm for iSPCAM is described in the Appendix. The proposed algorithm
is summarized in Algorithm 1. It is iterative and optimizes over ŭ(m)

1 for fixed ṽ
(m)
1 for eachm ∈ {1, . . . ,M}. Then it optimizes

over ṽ
(m)
1 for fixed ŭ(m)

1 for each m ∈ {1, . . . ,M}. The algorithm is repeated until convergence.

Algorithm 1: Computational Algorithm for iSPCAS

1. Initialize: For eachm ∈ {1, . . . ,M}, apply the standard SVD to X (m), and obtain the best rank-1 approximation of X (m)

as ω̂(m)û(m)
1 v̂

(m)⊤
1 , where û(m)

1 and v̂
(m)
1 are unit-norm vectors and ω̂(m) is the first singular value of X (m). Set

ŭ(m)
1,old = ω̂(m)û(m)

1 and ṽ
(m)
1,old = v̂

(m)
1 for eachm ∈ {1, . . . ,M}.

2. Update:

(a) ŭ1,new ≡ (ŭ(1)
1,new, . . . , ŭ(M)

1,new) = f (ṽ(1)
1,old, . . . , ṽ

(M)
1,old).

(b) ṽ
(m)
1,new = X (m)⊤ŭ(m)

1,new/∥X (m)⊤ŭ(m)
1,new∥ for eachm ∈ {1, . . . ,M}.

3. Repeat Step 2 while replacing ŭ(m)
1,old and ṽ

(m)
1,old by ŭ(m)

1,new and ṽ
(m)
1,new respectively until convergence. In our numerical

study, we used the ℓ2 norm of the difference between two consecutive estimates smaller than a prefixed threshold
as the criterion for convergence.

4. Standardize the final ŭ(m)
1,new as ũ(m)

1 = ŭ(m)
1,new/∥ŭ(m)

1,new∥ for each m ∈ {1, . . . ,M}.

In Algorithm 1 , the key is Step 2(a). With fixed ṽ
(1)
1 , . . . , ṽ

(M)
1 , the function f is defined via the following:

ŭ1 = f (ṽ(1)
1 , . . . , ṽ

(M)
1 ) = argmin

ŭ(m)
1 ,m∈{1,...,M}

L(ŭ(1)
1 , . . . , ŭ(M)

1 ),
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where L is the objective function in (3). As
M∑

m=1

1
2nm

∥X (m)
− ŭ(m)

1 ṽ
(m)⊤
1 ∥

2
F =

d∑
i=1

M∑
m=1

1
2nm

nm∑
j=1

(x(m)
ij − ŭ(m)

i,1 ṽ
(m)
j,1 )2,

the lack-of-fit measure is separable. In addition, the penalty function is also separable for the rows of ŭ1. Therefore, we can
optimize over each individual row of ŭ1. Suppose that we have an initial estimate {ŭ(1)0

i,1 , . . . , ŭ(M)0
i,1 } which is close to the

minimizer and which can be obtained from the standard SPCA. For ŭ(m)
i,1 ,

L(ŭ(m)
i,1 ) ≈

1
2nm

nm∑
j=1

(x(m)
ij − ŭ(m)

i,1 ṽ
(m)
j,1 )2 + µim(|ŭ

(m)
i,1 | − |ŭ(m)0

i,1 |) +
µ2

2

∑
ℓ̸=m

⎧⎨⎩ ŭ(m)
i,1√

(ŭ(m)0
i,1 )2 + τ 2

−
ŭ(ℓ)0
i,1√

(ŭ(ℓ)0
i,1 )2 + τ 2

⎫⎬⎭
2

,

where µim = ρ̇(
∑M

ℓ=1ρ(|ŭ
(ℓ)0
i,1 |; µ1, a), 1, b)ρ̇(|ŭ

(m)0
i,1 |; µ1, a). Then

ŭ(m)
i,1 = nm[1 + µ2nm(M − 1)/{(ŭ(m)0

i,1 )2 + τ 2
}]

−1S(Z (m)0
i , µim),

where S(z, t) = sign(z)(|z| − t)+, and

Z (m)0
i =

1
nm

nm∑
j=1

x(m)
ij ṽ

(m)
j,1 +

µ2√
(ŭ(m)0

i,1 )2 + τ 2

∑
ℓ̸=m

ŭ(ℓ)0
i,1√

(ŭ(ℓ)0
i,1 )2 + τ 2

.

Thus, in Step 2 (a), we can solve for ŭ1,new as follows. For the ith row of ŭ1,new, with i ∈ {1, . . . , d},

(1) let {ŭ(1)0
i,1 , . . . , ŭ(M)0

i,1 } = {ŭ(1)
i,1,old, . . . , ŭ

(M)
i,1,old}, and fix {ṽ

(1)
1 , . . . , ṽ

(M)
1 } = {ṽ

(1)
1,old, . . . , ṽ

(M)
1,old};

(2) for eachm ∈ {1, . . . ,M},

(a) update µim = ρ̇

(∑M
ℓ=1ρ(|ŭ

(ℓ)0
i,1 |; µ1, a), 1, b

)
ρ̇(|ŭ(m)0

i,1 |; µ1, a);

(b) update ŭ(m)0
i,1 = nm[1 + µ2nm(M − 1)/{(ŭ(m)0

i,1 )2 + τ 2
}]

−1S(Z (m)0
i , µim);

(3) return (ŭ(1)0
i,1 , . . . , ŭ(M)0

i,1 ).

With the proposed algorithm, computational cost increases linearly with d. To reduce computing time, estimation for
different i can be performed in a parallel manner. In each iteration, we only conduct Step 2 once as opposed to repeating until
convergence, which not only increases computational complexity but also decreases convergence speed with the linkage
between ŭ(m)

1 and ṽ
(m)
1 . Convergence of the proposed algorithm follows along the same lines as that for single-dataset SPCA,

which has been studied in the literature [17]. In all of our numerical studies, convergence is achieved within a small to
moderate number of iterations.With simple updates and fast convergence, the proposed algorithm is computationallymuch
affordable. For example, for one simulation replicate with d = 500 (more details described in the next section), the analysis
takes 49.8 s on a laptop with standard configurations.

2.6.1. Tuning parameter selection
iSPCAS involves tuning parameters µ1, µ2 and regularization parameters a, b. For a in MCP, published studies [11,25]

suggest examining a small number of values or fixing its value. In our case, we found that the results are not sensitive to a.We
set a = 6 as suggested in the literature. For b, we set b = 1/2Maµ2

1, which has been suggested in published composite MCP
studies, with the linkage between the inner and outer penalties. We use cross-validation to choose µ1 and µ2. Furthermore,
iSPCAS involves τ , with a smaller value leading to a better approximation but less stable computation. Closely examining
the methodological and theoretical developments suggests that the proposed approach does not demand a very accurate
approximation of the sign function. As long as τ is not too big and the approximation can differentiate parameters with
different signs, the proposed approach is valid. In our study, we fixed the value of τ 2

= 0.5, which leads to satisfactory
results. Other values may also need to be considered in practice.

3. Numerical study

3.1. Simulation

We conduct simulation to gauge performance of the proposed approach and compare with alternatives. We set M = 4,
nm = 25, and consider d ∈ {500, 1000}. To generate the data matrices, we first need to determine the population covariance
matrices. Following published single-dataset SPCA studies [17], we consider the single spike covariance structure with



8 K. Fang et al. / Journal of Multivariate Analysis 166 (2018) 1–16

Table 1
Simulation: combinations of α and β values.

Case 1 Case 2 Case 3

(β (1), β (2), β (3), β (4)) (α(1), α(2), α(3), α(4)), (α(1), α(2), α(3), α(4)) (α(1), α(2), α(3), α(4))

(0.3, 0.3, 0.3, 0.3) (0.4, 0.4, 0.4, 0.4) (0.4, 0.5, 0.6, 0.7) (0.3, 0.4, 0.4, 0.5)
(0.5, 0.5, 0.5, 0.5) (0.6, 0.6, 0.6, 0.6) (0.6, 0.6, 1.0, 1.5) (0.4, 0.6, 0.6, 0.7)
(0.8, 0.8, 0.8, 0.8) (1.0, 1.0, 1.0, 1.0) (0.9, 0.9, 1.5, 1.5) (0.7, 0.9, 0.9, 1.0)

λ
(m)
1 = dα(m)

, λ
(m)
2 = · · · = λ

(m)
d = 1, for all m ∈ {1, . . . ,M}. We construct the covariance matrices Σ

(m)
d s using the

eigen-decomposing expression

Σ
(m)
d =

d∑
i=1

λ
(m)
i u(m)

i u(m)⊤
i ,

where u(m)
i is the ith eigenvector. Set the number of nonzero entries in u(m)

1 as ⌊dβ(m)
⌋. To generate the orthonormal

eigenvectors of Σ
(m)
d , we first form a full rank matrix U (m)∗

d = [u(m)∗
1 , . . . , u(m)∗

d ]. Then, we apply the Gram–Schmidt
orthogonalization to U (m)∗

d to obtain the orthogonal matrix U (m)
d = [u(m)

1 , . . . , u(m)
d ]. For u(m)∗

1 , we consider the following
four scenarios:

Scenario I: u(m)∗
1 = (

⌊dβ(m)
⌋  

1, . . . , 1, 0, . . . , 0)⊤ for each m ∈ {1, . . . ,M}. That is, the u(m)∗
1 s have the same sparsity structure as

well as the same values.
Scenario II: First generate u(m)∗

i,1 ∼ N ((⌊dβ(m)
⌋+1−i)1.5, (⌊dβ(m)

⌋+1−i/4)2) for each i ∈ {1, . . . , ⌊dβ(m)
⌋}, and then randomly

permute their values. Set u(m)∗
i,1 = 0 for each i ∈ {⌊dβ(m)

⌋ + 1, . . . , d}. That is, the u(m)∗
1 s have the same sparsity structure

but not the same nonzero values.
Scenario III: u(m)∗

i,1 ∼ N (3, 0.22) for each i ∈ {1 + (m − 1)⌊dβ(m)
/4⌋, . . . ,m⌊dβ(m)

/4⌋}; u(m)∗
i,1 ∼ U(0.5, 1) for each i ∈

{M⌊dβ(m)
/4⌋+1, . . . ,M⌊dβ(m)

/4⌋+⌊dβ(m)
⌋−⌊dβ(m)

/4⌋}; u(m)∗
i,1 = 0, otherwise. That is, the u(m)∗

1 s have partially overlapping
sparsity structures.

Scenario IV: For randomly chosen {m1, . . . ,m
⌊dβ(m)

⌋
} ⊂ {1 . . . , d}, u(m)∗

mi,1
∼ N (0.8, 0.72). The other components are zero.

That is, the u(m)∗
1 s have random sparsity structures with random overlappings.

The four scenarios comprehensively cover different degrees of overlapping in sparsity structure and similarity in nonzero
values. The components of u(m)∗

i for i ∈ {2, . . . , d} and m ∈ {1, . . . ,M} are randomly drawn from U(1, 2).
We consider multiple combinations for the spike and sparsity pairs (α(1), β (1)), . . . , (α(M), β (M)). Published single-dataset

SPCA studies suggest the critical role of α and β . Specifically, when α ∈ (0, 1] and α ≤ β , the SPCA estimation is not
consistent [17]. As shown in Table 1, we consider a total of nine pairs, which can be classified into three cases. Under Case 1,
the α(m)s are equal across the M datasets. Under Case 2, α(m) > β (m) for all of the M datasets. Under Case 3, α(1)

≤ β (1). For
each simulation setting, we simulate 200 replicates.

Beyond iSPCA (the approach described in Section 2.2 without contrasted penalization), iSPCAM , and iSPCAS , we also
consider mPCA, mSPCA, and sSPCA. mPCA andmSPCA conduct PCA and SPCA for each dataset separately, and then summary
statistics (the sets of variables with nonzero loadings) are combined across datasets. Here ‘‘m’’ stands for meta-analysis.
Under sSPCA, all M datasets are stacked together and then analyzed using SPCA. Here ‘‘s’’ stands for stacking. In the
literature, multi-datasets dimension reduction analysis is very limited. The three alternatives are themost ‘‘straightforward’’
and relevant. To compare different approaches, we consider the following measures: angle (the acute angle between the
estimated and true first eigenvectors), TPR (true positive rate), and FDR (false discovery rate). Among them, angle quantifies
estimation accuracy, while TPR and FDR quantify identification accuracy.

The estimation results are summarized in Table 2 for Case 1 and in Tables 5–6 in the Appendix for Cases 2–3. It is observed
that the proposed integrative analysis has competitive performance. Specifically, mPCA, which generates dense estimates,
is inferior. Under Scenarios I, II, and III, which have overlapping sparsity structures, integrative analysis outperformsmSPCA.
sSPCA excels under Scenario I, which is as expected, but has inferior performance under Scenarios II, III, and IV. Under
Scenario I, where variables have the same loadings across datasets, iSPCAM has the best performance, as expected. Under
Scenarios II and III, iSPCAS , which is less stringent, outperforms the others. Under Scenario IV, which does not favor multi-
datasets analysis, the proposed integrative analysis still has performance comparable to meta-analysis. Under Case 3, which
may have theoretically inconsistent estimates, the proposed analysis still has reasonable performance. For mSPCA and the
three integrative analysis methods, the identification results are summarized in Fig. 1. For sSPCA, the identification results
are summarized in Table 7 in the Appendix (as the FDR values are dramatically larger than those in Fig. 1). Under Scenario I, all
methods have TPR values close to 1 and FDR values close to 0 (details omitted). Fig. 1 and Table 7 document the competitive
identification performance of the proposed analysis. Overall, iSPCAS has the most favorable identification performance, and
the other two integrative analysis methods are competitive compared to the meta-analysis methods and sSPCA.
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Table 2
Simulation Case 1. In each cell: median of the average angles across the M datasets between the estimated and true loading vectors (median absolute
deviation/0.6745).

β d = 500 d = 1000

mPCA mSPCA sSPCA iSPCA iSPCAM iSPCAS mPCA mSPCA sSPCA iSPCA iSPCAM iSPCAS

Scenario I
0.3 58.22 10.29 3.46 8.18 3.79 7.98 63.41 9.75 3.77 7.88 3.98 7.75

(4.74) (6.01) (1.38) (2.05) (1.26) (1.75) (3.40) (4.67) (1.26) (1.08) (1.14) (0.88)
0.5 35.49 8.60 3.83 8.22 3.79 8.10 40.45 8.51 4.12 8.26 4.18 8.14

(2.44) (1.32) (0.52) (1.13) (0.37) (1.11) (2.56) (1.47) (0.51) (0.74) (0.52) (0.67)
0.8 11.92 6.47 3.15 6.47 3.18 6.40 11.35 5.73 2.80 5.73 2.81 5.71

(0.88) (0.38) (0.17) (0.39) (0.22) (0.38) (0.66) (0.29) (0.10) (0.29) (0.11) (0.28)

Scenario II
0.3 58.27 14.55 29.74 13.96 11.14 8.22 63.00 13.89 29.82 12.53 10.71 7.52

(3.53) (3.54) (2.16) (4.05) (3.02) (1.90) (2.45) (3.30) (3.35) (1.74) (2.22) (1.14)
0.5 36.24 12.63 31.47 12.26 11.04 8.78 39.85 11.97 31.71 11.63 10.81 8.55

(2.49) (1.99) (1.25) (2.29) (1.52) (1.03) (1.66) (1.04) (1.30) (0.96) (0.74) (0.62)
0.8 11.74 8.00 31.85 7.76 7.41 6.41 12.02 7.69 32.08 7.35 7.11 6.10

(0.82) (0.57) (0.40) (0.60) (0.57) (0.63) (0.68) (0.41) (0.31) (0.48) (0.53) (0.25)

Scenario III
0.3 60.32 22.24 54.17 19.94 15.04 8.85 62.94 20.61 50.43 15.12 11.39 7.71

(3.55) (2.36) (3.48) (4.91) (4.94) (2.43) (3.27) (3.44) (2.66) (4.44) (3.12) (1.18)
0.5 36.30 17.74 56.69 15.50 13.09 8.92 38.93 16.66 55.53 14.03 12.60 8.69

(2.00) (2.08) (2.12) (2.05) (1.49) (1.11) (2.36) (2.02) (2.83) (2.43) (2.13) (1.07)
0.8 11.59 8.60 55.84 7.37 7.12 6.35 11.75 8.13 55.68 7.08 6.81 6.04

(1.04) (1.21) (3.18) (1.01) (0.84) (0.41) (0.45) (0.75) (2.33) (0.50) (0.46) (0.41)

Scenario IV
0.3 59.23 15.38 75.81 17.01 15.88 15.23 62.64 15.33 75.84 15.26 14.84 14.40

(4.55) (3.88) (0.61) (4.17) (4.40) (4.13) (2.97) (6.08) (0.34) (5.48) (4.98) (4.85)
0.5 37.08 13.41 74.44 14.17 13.88 13.68 38.99 12.50 74.99 13.13 12.49 12.46

(1.49) (1.24) (1.62) (2.05) (1.70) (1.78) (1.49) (1.38) (0.77) (1.06) (1.35) (1.06)
0.8 11.51 7.83 55.24 8.04 7.98 7.89 11.85 7.60 56.97 7.80 7.72 7.65

(0.80) (0.73) (2.05) (0.80) (0.80) (0.80) (0.68) (0.58) (1.74) (0.56) (0.58) (0.64)

3.2. Data analysis

Here we analyze cancer gene expression studies, which often have high-dimensional measurements on a small to mod-
erate number of samples. In such studies, PCA (and other dimension reduction analysis) has been extensively conducted and
has revealed insightful data structures as well as served as the basis for other analyses such as clustering and regression [13].
The analyzed datasets are obtained from GEO (Gene Expression Omnibus). Two sets of analysis are conducted.

3.2.1. Set I: Analysis of breast cancer datasets
The three datasets haveGEO IDsGSE9574, GSE21947, andGSE5364, respectively.We refer to the original publications and

GEOwebsite for more information on these data and omit the details here except to say that the sample sizes are 29, 30, and
196, respectively. The three datasets have been jointly analyzed in published studies [20]. For each dataset, we conduct gene
expression normalization (without variance standardization) and imputation of missing values. Genes are matched across
datasets using their Unique IDs. In total, 20,995 gene expressions are measured in all three datasets. As gene expressions
with higher variations are usually more interesting, in each dataset, we identify the 400 genes with the largest variances.
Across the three datasets, 1028 gene expressions are selected for downstream analysis.

We apply the proposed methods and their sparse alternatives. The analysis results are summarized in Tables 3–4. More
detailed estimation results are available from the authors. It can be seen from both tables that different methods lead to
different estimation and identification results. Table 4 suggests that for this specific set of analysis, results of iSPCA and iSPCAS
are the closest. The three datasets come from independent studies conducted by different research groups under different
protocols. iSPCAM assumes similarmagnitudes, whichmay be too stringent. The proposed integrative analysismethodswith
contrastedpenalties identifymore consistent nonzero loadings across datasets,whichmay lead tomore focuseddownstream
analysis.

To complement the estimation and identification analysis, we also evaluate the stability of analysis by computing the
observed occurrence index (OOI) [4]. Briefly,we randomly select 75% samples fromeach dataset and then conduct integrative
analysis. This process is repeated 100 times. For each gene identified (as having nonzero loadings) using the whole data, we
compute its probability of being identified out of the 100 resamplings; this probability has been referred to as the OOI. For
the proposed integrative analysis, the median OOI values are 0.91 (iSPCA), 0.94 (iSPCAM ), and 0.91 (iSPCAS), respectively.
The satisfactory stability provides additional support for the validity of the analysis.
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Fig. 1. Simulation: summary of identification results. Rows 1–3 correspond to Cases 1–3; Columns 1–3 correspond to Scenarios II–IV. Filled triangles,
dots, hollow triangles, and circles correspond to iSPCAS , iSPCAM , iSPCA, and mSPCA, respectively. In each panel, there are six points for each method,
corresponding to three values of β (m) and two values of d.

Table 3
Data analysis: Number of genes identified as having nonzero loadings and overlap between two datasets.

Dataset sSPCA mSPCA iSPCA iSPCAM iSPCAS

Set I

Number 1 177 41 44 81 44
2 177 63 77 81 75
3 177 166 183 81 174

Overlap 1,2 177 28 38 81 38
1,3 177 24 29 81 29
2,3 177 44 54 81 52

Set II

Number 1 627 53 101 101 99
2 627 452 153 153 153
3 627 746 322 322 322
4 627 535 576 576 589

Overlap 1,2 627 52 84 84 82
1,3 627 41 62 62 58
1,4 627 35 76 76 74
2,3 627 347 97 97 95
2,4 627 263 111 111 113
3,4 627 454 263 263 264
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Table 4
Data analysis: angle between PC loadings estimated by different methods.

sSPCA mSPCA iSPCA iSPCAM iSPCAS sSPCA mSPCA iSPCA iSPCAM iSPCAS

Set I

GSE9574 GSE2194

sSPCA 0.00 42.49 42.27 21.99 42.47 0.00 27.72 27.67 21.99 27.67
mSPCA 0.00 0.89 22.82 0.88 0.00 1.40 9.69 1.30
iSPCA 0.00 22.77 0.03 0.00 9.62 0.50
iSCPAM 0.00 22.77 0.00 9.60
iSPCAS 0.00 0.00

GSE5364

sSPCA 0.00 5.22 5.22 21.97 5.21
mSPCA 0.00 0.61 27.08 0.42
iSPCA 0.00 27.08 0.44
iSCPAM 0.00 27.07
iSPCAS 0.00

Set II

GSE9574 GSE16515

sSPCA 0.00 89.11 89.09 89.09 89.10 0.00 16.87 16.89 16.89 16.89
mSPCA 0.00 2.23 2.23 2.17 0.00 0.53 0.53 0.53
iSPCA 0.00 0.00 0.51 0.00 0.00 0.13
iSCPAM 0.00 0.51 0.00 0.13
iSPCAS 0.00 0.00

GSE21947 GSE19650

sSPCA 0.00 89.30 89.31 89.31 89.31 0.00 0.36 0.35 0.35 0.35
mSPCA 0.00 1.22 1.22 1.23 0.00 0.06 0.06 0.07
iSPCA 0.00 0.00 0.31 0.00 0.00 0.03
iSCPAM 0.00 0.31 0.00 0.03
iSPCAS 0.00 0.00

Table 5
Simulation Case 2. In each cell: median of the average angles across the M datasets between the estimated and true loading vectors (median absolute
deviation/0.6745).

β d = 500 d = 1000

mPCA mSPCA sSPCA iSPCA iSPCAM iSPCAS mPCA mSPCA sSPCA iSPCA iSPCAM iSPCAS

Scenario I
0.3 43.19 5.41 1.90 5.40 2.21 5.07 46.83 5.03 1.94 5.03 1.98 4.29

(2.97) (1.73) (0.58) (0.91) (0.87) (1.16) (2.07) (1.16) (0.51) (1.07) (0.58) (1.31)
0.5 25.98 5.79 0.49 5.80 1.02 2.21 28.57 5.97 0.36 5.86 0.95 2.17

(1.60) (1.05) (0.14) (0.95) (0.31) (0.19) (2.33) (1.58) (0.06) (1.22) (0.25) (0.15)
0.8 11.43 6.13 0.92 6.14 1.26 2.12 11.20 5.76 0.71 5.69 1.01 2.01

(0.86) (0.51) (0.10) (0.46) (0.13) (0.09) (0.82) (0.40) (0.08) (0.30) (0.13) (0.07)

Scenario II
0.3 43.11 8.62 32.39 7.60 6.97 5.41 47.34 8.30 32.01 7.19 6.48 5.30

(1.99) (2.33) (4.11) (2.11) (1.47) (1.07) (1.44) (2.42) (4.56) (1.44) (1.40) (1.09)
0.5 26.46 9.39 39.95 8.19 8.43 5.82 28.95 8.82 42.26 7.62 8.09 5.81

(2.43) (1.33) (2.56) (1.43) (1.09) (0.83) (2.12) (1.24) (1.89) (1.08) (1.01) (0.79)
0.8 11.29 8.01 36.31 7.43 7.23 6.04 11.72 7.61 36.64 7.12 6.98 5.81

(1.10) (0.72) (0.76) (0.90) (0.58) (0.50) (1.37) (1.04) (0.84) (0.93) (0.84) (0.91)

Scenario III
0.3 44.78 13.61 59.51 10.26 7.60 5.72 47.43 11.65 56.15 7.48 5.69 5.03

(3.29) (2.92) (3.29) (4.34) (3.00) (1.42) (2.18) (3.14) (3.41) (2.61) (1.87) (0.95)
0.5 26.04 12.68 67.47 9.89 8.84 6.13 28.24 12.47 67.74 9.87 8.27 6.19

(1.36) (1.29) (0.39) (1.30) (1.66) (0.87) (2.34) (2.55) (0.28) (2.10) (1.72) (0.89)
0.8 11.21 9.22 62.96 8.05 7.78 6.16 11.88 9.57 63.15 8.28 8.02 6.21

(1.17) (1.11) (2.13) (1.22) (0.90) (0.71) (0.77) (0.79) (1.83) (0.68) (0.60) (0.29)

Scenario IV
0.3 43.66 8.45 75.55 10.16 8.87 8.72 47.13 7.92 75.54 8.69 7.78 7.40

(2.66) (3.00) (0.06) (3.99) (3.28) (3.05) (2.82) (2.32) (0.02) (2.20) (2.49) (2.36)
0.5 25.65 9.06 74.52 9.61 9.44 9.24 27.94 8.90 74.71 9.30 9.32 8.88

(1.63) (1.12) (0.76) (1.86) (1.30) (1.41) (1.02) (1.15) (0.60) (1.57) (1.14) (1.40)
0.8 10.82 7.63 63.06 7.81 7.82 7.67 11.58 7.90 64.57 8.06 8.26 7.88

(0.90) (0.74) (2.89) (0.77) (0.62) (0.79) (0.96) (0.72) (2.81) (0.84) (0.84) (0.64)
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Table 6
Simulation Case 3. In each cell: median of the average angles across the M datasets between the estimated and true loading vectors (median absolute
deviation/0.6745).

β d = 500 d = 1000

mPCA mSPCA sSPCA iSPCA iSPCAM iSPCAS mPCA mSPCA sSPCA iSPCA iSPCAM iSPCAS

Scenario I
0.3 60.22 28.63 3.88 14.69 4.12 8.52 64.36 26.03 3.58 9.06 3.56 7.85

(3.51) (13.65) (1.36) (9.73) (1.43) (1.50) (3.29) (11.09) (1.16) (2.72) (0.85) (1.04)
0.5 40.48 19.76 4.02 13.23 4.25 9.20 44.62 22.55 3.88 15.10 4.32 9.46

(2.88) (4.78) (0.93) (3.89) (0.91) (0.97) (2.66) (7.75) (0.53) (3.90) (0.57) (0.74)
0.8 18.92 13.81 4.23 12.15 4.44 9.29 18.94 13.18 3.91 11.66 4.20 8.84

(1.36) (2.23) (0.32) (1.76) (0.24) (0.33) (1.16) (2.27) (0.38) (2.13) (0.35) (0.44)

Scenario II
0.3 59.67 18.98 30.98 17.73 13.13 8.67 64.49 23.22 31.87 16.16 14.21 7.89

(3.43) (7.73) (3.15) (6.16) (3.98) (1.94) (2.25) (9.43) (4.08) (3.43) (4.07) (1.70)
0.5 40.62 17.05 33.10 16.12 13.44 10.86 45.07 19.39 34.08 17.68 15.17 11.24

(2.68) (3.70) (1.35) (3.15) (1.99) (2.03) (2.38) (4.80) (1.67) (2.93) (1.88) (1.17)
0.8 18.88 13.64 33.60 13.03 12.31 10.55 20.00 14.04 34.26 13.32 12.38 10.80

(1.32) (0.74) (1.31) (1.00) (0.92) (0.74) (1.48) (1.68) (1.09) (1.42) (1.30) (0.80)

Scenario III
0.3 62.09 23.32 58.88 21.55 18.73 10.09 64.34 20.78 54.57 19.43 15.68 8.73

(4.71) (5.94) (4.61) (4.93) (5.58) (4.33) (2.43) (3.40) (4.48) (4.28) (3.92) (2.56)
0.5 40.20 19.54 61.85 19.19 16.76 11.88 43.74 18.45 65.21 19.35 17.29 12.26

(1.22) (2.39) (3.84) (1.98) (1.32) (2.01) (2.39) (1.67) (2.62) (2.03) (2.47) (2.78)
0.8 18.48 15.78 63.80 14.65 14.36 10.98 20.38 16.31 64.77 15.49 15.01 11.88

(1.38) (0.99) (3.28) (1.21) (1.24) (1.16) (1.33) (0.68) (3.18) (1.39) (1.33) (0.91)

Scenario IV
0.3 60.63 22.69 75.65 23.76 22.83 21.74 63.06 24.94 75.62 27.01 24.58 21.51

(2.46) (9.34) (0.24) (8.53) (8.29) (9.41) (3.52) (16.64) (0.12) (17.58) (14.32) (9.33)
0.5 40.20 17.39 74.69 18.10 17.80 17.66 43.66 18.57 74.83 19.90 19.17 18.59

(2.24) (2.41) (0.76) (2.73) (1.55) (2.04) (1.85) (3.21) (0.86) (3.65) (2.83) (2.92)
0.8 18.35 14.26 63.75 14.43 14.44 14.12 19.77 14.87 66.91 15.05 14.91 14.66

(1.11) (1.57) (3.85) (1.30) (1.17) (1.23) (1.30) (1.60) (2.98) (1.80) (1.68) (1.42)

3.2.2. Set II: Analysis of breast and pancreatic cancer datasets
Cancer types are intrinsically different. However, more and more studies confirm that seemingly different cancers can

share common genetic ground. Thus, the joint analysis of data on different cancer types has been conducted in a series
of studies and led to insightful findings [9,11,14]. Here we conduct the joint analysis of data on breast cancer (GEO ID
GSE9574 and GSE21947) and pancreatic cancer (GEO ID GSE16515 and GSE19650). The sample sizes are 29, 30, 52, and
22, respectively. Pre-processing is conducted in a similar manner as described above. The four datasets share 20,985 gene
expression measurements. A total of 1634 genes are selected for downstream analysis. With data on two different cancer
types, the degree of similarity across datasets may be lower than in the previous analysis.

The analysis results are also summarized in Tables 3–4. Some findings are similar to those described above: different
methods generate different results; by promoting similarity, iSPCAM and iSPCAS generate more consistent findings across
datasets. In this set of analyses, two different cancer types are considered. It is observed that they share common genes
with nonzero loadings. However, as expected, such overlap is lower than that for datasets on the same cancer type. We also
conduct stability evaluation in the sameway as described above. Themedian OOI values are 0.89 (iSPCA), 0.90 (iSPCAM ), and
0.89 (iSPCAS), respectively. Again, satisfactory stability is observed.

4. Discussion

In the analysis of high-dimensional data, PCA and other dimension reduction techniques have been extensively applied.
In this study, built on the SPCA technique, we have developed the iSPCA approach for the integrative analysis of multiple
independent datasets. This study significantly extends the novel integrative analysis paradigm by conducting dimension
reduction analysis. An important contribution is that, to promote more effectively similarity across datasets, two contrasted
penalties have been developed. The sign-based contrasted penalty has not been well studied in the literature. Thus
its methodological, theoretical, and numerical investigations may have independent value beyond this article. Rigorous
theoretical investigation establishes the consistency property of the proposed integrative analysis. Effective computational
algorithms have been developed. Extensive simulations demonstrate satisfactory performance of the proposed analysis.
iSPCAM and iSPCAS do not dominate each other. Their performance depends on data/model setting. They are thus both
needed in practice. In data analysis, the proposed integrative analysis leads to findings different from meta-analysis and
stacked analysis. By promoting similarity across datasets, iSPCAM and iSPCAS lead tomore consistent findings. The proposed
integrative analysis is observed to have satisfactory stability.
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Table 7
Simulation results for sSPCA. In each cell: median of the average TPR values and FDR values across the M datasets (median absolute deviation/0.6745).

β Case 1 Case 2 Case 3

d = 500 d = 1000 d = 500 d = 1000 d = 500 d = 1000

TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR

Scenario I
0.3 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
0.5 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
0.8 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Scenario II
0.3 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
0.5 0.95 0.00 0.97 0.00 1.00 0.00 1.00 0.00 0.95 0.00 0.97 0.00

(0.03) (0.00) (0.05) (0.00) (0.00) (0.00) (0.00) (0.00) (0.07) (0.00) (0.00) (0.00)
0.8 0.99 0.00 0.99 0.00 0.99 0.00 0.99 0.00 0.97 0.01 0.97 0.01

(0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01)

Scenario III
0.3 0.96 0.28 1.00 0.30 0.92 0.21 0.96 0.25 0.92 0.21 0.96 0.25

(0.06) (0.09) (0.00) (0.03) (0.00) (0.00) (0.00) (0.00) (0.06) (0.10) (0.00) (0.06)
0.5 0.96 0.40 0.97 0.40 0.83 0.17 0.83 0.17 0.90 0.34 0.84 0.28

(0.03) (0.06) (0.04) (0.04) (0.00) (0.00) (0.00) (0.00) (0.04) (0.04) (0.07) (0.07)
0.8 1.00 0.44 1.00 0.44 0.88 0.30 0.88 0.30 0.92 0.38 0.91 0.38

(0.00) (0.02) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.04) (0.10) (0.04) (0.10)

Scenario IV
0.3 0.17 0.75 0.18 0.75 0.25 0.75 0.25 0.75 0.21 0.75 0.21 0.75

(0.06) (0.00) (0.05) (0.00) (0.06) (0.00) (0.03) (0.00) (0.06) (0.00) (0.03) (0.00)
0.5 0.23 0.73 0.20 0.73 0.27 0.71 0.27 0.73 0.22 0.73 0.21 0.73

(0.08) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.03) (0.02) (0.03) (0.02)
0.8 0.91 0.65 0.92 0.69 0.71 0.57 0.69 0.59 0.62 0.58 0.49 0.58

(0.05) (0.05) (0.05) (0.04) (0.03) (0.02) (0.01) (0.01) (0.17) (0.04) (0.14) (0.03)

This study can be potentially extended in multiple directions. Beyond PCA, there are quite a few other dimension
reduction techniques. It can be of interest to conduct integrative analysis based on other techniques. For regularized
estimation and selection, we adopt the composite MCP. This penalty has demonstrated satisfactory performance in other
contexts. There are other penalties that can also serve the purpose of regularized estimation and two-level selection. Both the
magnitude- and sign-based contrasted penalties can have applications far beyond this study. In data analysis, the proposed
integrative analysis leads to findings different from meta-analysis and stacked analysis. The satisfactory stability provides
certain support to the validity of analysis. However, additional analysis is needed to confirm the findings (though there are
no commonly accepted approaches for evaluating SPCA results in the literature).
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Appendix

Proof of Theorems 1 and 2

Here we prove Theorem 1. Theorem 2 then follows from Theorem 1 and similar arguments as in [17]. For each m ∈

{1, . . . ,M}, let v̂(m)
1 denote the first right singular vector of X (m).With ṽ

(m)
1 = v̂

(m)
1 , the penalized estimate can be rewritten as

ŭ1 = argmin
ŭ(m)
1 ,m∈{1,...,M}

M∑
m=1

1
2nm

∥X (m)
− ŭ(m)

1 v̂
(m)⊤
1 ∥

2
F +

d∑
i=1

ρ

(
M∑

m=1

ρ(|ŭ(m)
i,1 |; µ1, a); 1, b

)

+
µ2

2

d∑
i=1

∑
1≤ℓ<m≤M

⎛⎝ ŭ(m)
i,1√

ŭ(m)2
i,1 + τ 2

−
ŭ(ℓ)
i,1√

ŭ(ℓ)2
i,1 + τ 2

⎞⎠2

,
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where ŭ1 = (ŭ(1)
1 , . . . , ŭ(M)

1 ). The first term can be rewritten as

M∑
m=1

1
2nm

∥X (m)
− ŭ(m)

1 v̂
(m)⊤
1 ∥

2
F =

d∑
i=1

M∑
m=1

1
2nm

nm∑
j=1

(x(m)
ij − ŭ(m)

i,1 v̂
(m)
j,1 )2.

Therefore, we can optimize over each individual row of ŭ1.
By the Karush–Kuhn–Tucker (KKT) conditions, ŭ(m)

i,1 , for eachm ∈ {1, . . . ,M}, satisfies

1
nm

⎛⎝ŭ(m)
i,1 −

nm∑
j=1

x(m)
i,j v̂

(m)
j,1

⎞⎠+ µim sign(ŭ(m)
i,1 ) +

µ2cimτ 2

(ŭ(m)2
i,1 + τ 2)3/2

= 0 if ŭ(m)
i,1 ̸= 0,

where

µim = ρ̇

(
M∑

ℓ=1

ρ(|ŭ(ℓ)
i,1|; µ1, a), 1, b

)
ρ̇(|ŭ(m)

i,1 |; µ1, a), cim =

∑
ℓ̸=m

(
ŭ(m)
i,1 /

√
ŭ(m)2
i,1 + τ 2 − ŭ(ℓ)

i,1/

√
ŭ(ℓ)2
i,1 + τ 2

)
.

In addition,⏐⏐⏐ nm∑
j=1

x(m)
i,j v̂

(m)
j,1 + µ2

∑
ℓ̸=m

ŭ(ℓ)
i,1

τ

√
ŭ(ℓ)2
i,1 + τ 2

⏐⏐⏐ ≤ µ1ρ̇

⎛⎝ M∑
ℓ̸=m

ρ(|ŭ(ℓ)
i,1|; µ1, a), 1, b

⎞⎠ if ŭ(m)
i,1 = 0.

Denote û(m)
i,1 =

∑nm
j=1x

(m)
i,j v̂

(m)
j,1 . Since µ2 = o(µ1) and cim is bounded, we have

µ2cimτ 2(ŭ(m)2
i,1 + τ 2)−3/2

= o(µ−2
1 )

and

ρ̇(|ŭ(m)
i,1 |; µ1, a) = µ1(1 − |ŭ(m)

i,1 |/(µ1a))+ = 0

if |ŭ(m)
i,1 | ≥ µ1a. We also have ŭ(m)

i,1 = û(m)
i,1 + o(µ−2

1 ) if |ŭ(m)
i,1 | ≥ µ1a. In addition

|ŭ(m)
i,1 | + nmρ̇

(
M∑

ℓ=1

ρ(|ŭ(ℓ)
i,1|; µ1, a), 1, b

)
(µ1 − |ŭ(m)

i,1 |/a) = |û(m)
i,1 + o(µ1)|

if 0 < |ŭ(m)
i,1 | < aµ1. Without loss of generality, suppose that nm > a for allm ∈ {1, . . . ,M}. With b = 1/2Maµ2

1,

ρ̇

(
M∑

ℓ=1

ρ(|ŭ(ℓ)
i,1|; µ1, a), 1, b

)
≤ 1,

and

|ŭ(m)
i,1 | + nmρ̇

(
M∑

ℓ=1

ρ(|ŭ(ℓ)
i,1|; µ1, a), 1, b

)
(µ1 − |ŭ(m)

i,1 |/a) ≤ |ŭ(m)
i,1 | + nm(µ1 − |ŭ(m)

i,1 |/a) ≤ nmµ1,

if 0 < |ŭ(m)
i,1 | < aµ1. In other words, |ŭ(m)

i,1 | > aµ1 if |û(m)
i,1 + o(µ1)| > nmµ1. Denote ξim = |û(m)

i,1 + o(µ1)|. Define

u∗(m)
i,1 = ŭ(m)

i,1 1(ξim > nmµ1) + ξim1(ξim ≤ nmµ1)1{|û
(m)
i,1 /nm| ≥ µ1/M − µ2(M − 1)/τ },

u
′(m)
i,1 = ŭ(m)

i,1 1(ξim > nmµ1) − ξim1(ξim ≤ nmµ1)1{|û
(m)
i,1 /nm| ≥ µ1/M − µ2(M − 1)/τ },

for each i ∈ {1, . . . , d}. Following the proof of Theorem 3.1 in [17], we can show that ũ∗(m)
1 = u∗(m)

1 /∥u∗(m)
1 ∥ and ũ

′(m)
1 =

u
′(m)
1 /∥u

′(m)
1 ∥ are consistent for u(m)

1 , with a convergence rate of dκ/2.
We can see that, if |û(m)

i,1 + o(µ1)| > nmµ1, then u
′(m)
i,1 = u∗(m)

i,1 = ŭ(m)
i,1 . If u

′(m)
i,1 = u∗(m)

i,1 = 0, then |û(m)
i,1 /nm| <

µ1/M − µ2(M − 1)/τ , which indicates that

|û(m)
i,1 /nm + µ2

∑
ℓ̸=m

⎛⎝ ŭ(ℓ)
i,1√

ŭ(ℓ)2
i,1 + τ 2

⎞⎠ τ−1
| ≤

⏐⏐⏐ û(m)
i,1

nm

⏐⏐⏐+ µ2(M − 1)
τ

≤
µ1

M
.

Since ρ̇(
∑M

ℓ̸=mρ(|ŭ(ℓ)
i,1|; µ1, a), 1, b) ≥ 1/M , with b = 1/2aMµ2

1, combined with the KKT conditions, we can get that

|û(m)
i,1 /nm| < µ1/M − µ2(M − 1)/τ ⇒ ŭ(m)

i,1 = 0.
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Then we can conclude that u
′(m)
i,1 ≤ ŭ(m)

i,1 ≤ u∗(m)
i,1 . And it is easy to see that ũ(m)

1 = ŭ(m)
1 /∥ŭ(m)

1 ∥ is consistent for u(m)
1 , with a

convergence rate of dκ/2. □

Computational algorithm for iSPCAM

Consider the penalized objective function

L̃(ŭ(1)
1 , . . . , ŭ(M)

1 ) =

M∑
m=1

1
2nm

∥X (m)
− ŭ(m)

1 ṽ
(m)⊤
1 ∥

2
F+

d∑
i=1

ρ

(
M∑

m=1

ρ(|ŭ(m)
i,1 |; µ1, a); 1, b

)
+

µ2

2

d∑
i=1

∑
1≤ℓ<m≤M

(ŭ(m)
i,1 − ŭ(ℓ)

i,1)
2,

subject to ∥ṽ
(1)
1 ∥ = · · · = ∥ṽ

(M)
1 ∥ = 1.

We adopt a similar computational algorithm as for iSPCAS . The key difference lies in Step 2(a). Consider

ŭ1 = f (ṽ(1)
1 , . . . , ṽ

(M)
1 ) = argmin

ŭ(m)
1 ,m∈{1,...,M}

L̃(ŭ(1)
1 , . . . , ŭ(M)

1 ),

with fixed ṽ
(1)
1 , . . . , ṽ

(M)
1 . Suppose that we have initial estimate {ŭ(1)0

i,1 , . . . , ŭ(M)0
i,1 }which is close to the minimizer. This can be

obtained from the standard SPCA. For ŭ(m)
i,1 , with fixed ṽ

(1)
1 , . . . , ṽ

(M)
1 ,

L̃(ŭ(m)
i,1 ) ≈

1
2nm

nm∑
j=1

(x(m)
ij − ŭ(m)

i,1 ṽ
(m)
j,1 )2 + µim(|ŭ

(m)
i,1 | − |ŭ(m)0

i,1 |) +
µ2

2

∑
ℓ̸=m

(ŭ(m)
i,1 − ŭ(ℓ)0

i,1 )2,

where µim = ρ̇(
∑M

ℓ=1ρ(|ŭ
(ℓ)0
i,1 |; µ1, a), 1, b)ρ̇(|ŭ

(m)0
i,1 |; µ1, a). Then

ŭ(m)
i,1 =

nm

1 + µ2nm(M − 1)
S(Z (m)0

i , µim),

where

Z (m)0
i =

1
nm

nm∑
j=1

x(m)
ij ṽ

(m)
j,1 + µ2

∑
ℓ̸=m

ŭ(ℓ)0
i,1 .

Thus, in Step 2(a) we can solve for ŭ1,new as follows.
For the ith row of ŭ1,new, with i ∈ {1, . . . , d},

1. Let {ŭ(1)0
i,1 , . . . , ŭ(M)0

i,1 } = {ŭ(1)
i,1,old, . . . , ŭ

(M)
i,1,old}, and fix {ṽ

(1)
1 , . . . , ṽ

(M)
1 } = {ṽ

(1)
1,old, . . . , ṽ

(M)
1,old}.

2. For eachm ∈ {1, . . . ,M},

(a) update µim = ρ̇

(∑M
ℓ=1ρ(|ŭ

(ℓ)0
i,1 |; µ1, a), 1, b

)
ρ̇(|ŭ(m)0

i,1 |; µ1, a);

(b) update ŭ(m)0
i,1 = nm/(1 + µ2nm(M − 1))S(Z (m)0

i , µim).

3. Return (ŭ(1)0
i,1 , . . . , ŭ(M)0

i,1 ).
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