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a b s t r a c t

In biomedical data analysis, clustering is commonly conducted. Biclustering analysis
conducts clustering in both the sample and covariate dimensions and can more com-
prehensively describe data heterogeneity. In most of the existing biclustering analyses,
scalar measurements are considered. In this study, motivated by time-course gene
expression data and other examples, we take the ‘‘natural next step’’ and consider the
biclustering analysis of functionals under which, for each covariate of each sample, a
function (to be exact, its values at discrete measurement points) is present. We develop
a doubly penalized fusion approach, which includes a smoothness penalty for estimating
functionals and, more importantly, a fusion penalty for clustering. Statistical properties
are rigorously established, providing the proposed approach a strong ground. We also
develop an effective ADMM algorithm and accompanying R code. Numerical analysis,
including simulations, comparisons, and the analysis of two time-course gene expression
data, demonstrates the practical effectiveness of the proposed approach.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In biomedical data analysis, clustering has been routinely conducted. The clustering of samples can assist better
nderstanding sample heterogeneity, and the clustering of covariates can identify those that behave similarly across
amples and then, for example, improve our understanding of covariate functionalities. Clustering can also serve as
he basis of other analysis, for example, regression. Biclustering analysis has also been developed, identifying clustering
tructures in both sample and covariate dimensions. It includes sample- and covariate-clustering as special cases and, in
sense, can be more comprehensive. For generic reviews of techniques, theories, and applications of clustering, we refer
o [19,46].

This study has been partly motivated by the analysis of gene expression data, for which sample- and covariate-
lustering as well as biclustering have been extensively conducted [21,45]. Most gene expression studies generate
‘snapshot’’ values. Unlike some types of omics measurements, gene expression values can be time-dependent, and the
emporal trends of gene expressions can have important biological implications [16]. Accordingly, time-course gene
xpression studies have been conducted, generating multiple measurements at different time points for each gene of
ach sample. In the analysis of time-course gene expression data, besides simple statistics, functional data analysis (FDA)
echniques, have been adopted and shown as powerful [12].
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FDA deals with data samples that consist of curves or other infinite-dimensional data objects. Over the last two decades,
we have witnessed significant developments in its theory, method, computation, and application. For systematic reviews,
we refer to [2,15,23,40]. In FDA, clustering analysis has been of particular interest. A popular approach projects functional
data into a finite-dimensional space and then applies existing clustering methods. For example, Abraham et al. [1] conduct
B-spline expansions, and clusters the estimated coefficients using a k-means algorithm. Peng and Müller [30] develop a
distance for sparse functional data, and apply a k-means algorithm to functional principle component analysis (PCA)
scores. Other approaches, such as Bayesian [37], subspace [3,9,10], and model-based [18,20], have also been developed.
We refer to [17,40] for surveys on functional data clustering. Most works in this area, however, have focused on either
sample- or covariate-clustering.

For biclustering analysis (of gene expression and other types of data), in this article, we take the ‘‘natural next step’’
and consider the scenario where for each covariate of each sample, a function or its realizations at discrete time points
are available. We note that, although this study has been partly motivated by gene expression data and some of the
discussions are focused on such data, the considered data scenario and proposed technique can have applications far
beyond such data. For example, in biomedical studies, many biomarkers measured in blood tests vary across time, and
their values can be obtained from medical records. In financial studies, many measures of a company, for example size
and stock price, vary across time. As such, our investigation can have broad applications.

There is a vast literature on biclustering analysis with scalar measurements. Directly applying such techniques to the
present problem will involve either treating functional measurements as scalars and then computing distances (between
covariates and samples) – which may be ineffective by not sufficiently accounting for the functional nature of data, or first
estimating functionals and then computing distances between the estimates – which may also encounter challenges when
a large number of functionals need to be jointly estimated. Our literature review suggests that there are also a handful
recent biclustering methods designed for functional (especially including longitudinal) data. For example, Slimen et al. [35]
propose a biclustering method for multivariate functional data based on the Gaussian latent block model (LBM) using the
first functional PCA scores. Bouveyron et al. [4] develop an extension of the Gaussian LBM by modeling the whole set of
functional PCA scores. In another work [28], a biclustering method with a plaid model is extended to three-dimensional
data arrays, of which multivariate longitudinal data is a special case.

For the biclustering analysis of functionals, in this article, we develop a penalized fusion based approach. More
specifically, a nonparametric model is assumed for each covariate of each sample, allowing for sufficient flexibility in
modeling. A doubly penalization technique is adopted, which includes a smoothness penalty to regulate nonparametric
estimation. The most significant advancement is the second, fusion penalty, which ‘‘transforms’’ clustering in both sample
and covariate dimensions to a penalized estimation problem. Statistical and numerical investigations are conducted,
providing the proposed approach a solid ground. This study may complement and advance from the existing ones
in multiple aspects. Compared to direct applications of biclustering methods for scalars (that either directly compute
distances without functional estimation or estimate functionals separately), the proposed approach can more effectively
accommodate the functional nature of data or generate more effective estimation. This is because it ‘‘combines’’ clustering
and estimation, and as such, estimation only needs to be conducted for clusters as opposed to individual covariates,
potentially leading to a smaller number of parameters and hence more effective estimation. Compared to some of the
existing biclustering methods for functionals, such as [4,35], the proposed approach has a much easier way of determining
the number of clusters. In addition, unlike [4,35], it does not make stringent distributional assumptions (for example,
normality). Meanwhile, rigorous theoretical investigations are conducted beyond methodological developments, granting
the proposed approach a stronger statistical basis. It also advances from the clustering of functional covariate effects
(assuming homogeneous samples) by simultaneously examining sample heterogeneity, thus being more comprehensive.
Additionally, this study may also advance and enrich the penalized fusion technique. Clustering via penalized fusion has
been pioneered in [8] and other studies. Compared to alternative clustering techniques, it is more recent and has notable
statistical and numerical advantages [44]. Compared to the existing penalized fusion based clustering, this study differs
by conducting biclustering and by having unknown parameters generated from the basis expansion of functionals. Last
but not least, this study also provides a practically useful and new way of analyzing time-course gene expression data
(and other data with similar characteristics).

The remainder of this article is organized as follows: Section 2 introduces the new biclustering approach via penalized
fusion and develops an effective computational algorithm. Statistical properties are established to provide our method
a strong theoretical support. Simulation studies and the analysis of two time-course expression data are conducted in
Sections 3 and 4, respectively. Section 5 concludes with a brief discussion. The proofs of the main results are presented
in Appendix A.

2. Methods

2.1. Data and model settings

For the j ∈ {1, . . . , q}th covariate of sample i ∈ {1, . . . ,N}, denote Yi,j = (Yi,j,1, . . . , Yi,j,ni,j )
⊤ as the ordered

measurements (ordered by time for time-course gene expression data), which are the discrete realizations of an unknown
2
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nderlying functional. Further denote Yi = (Y⊤

i,1, . . . ,Y
⊤

i,q)
⊤, Y = (Y⊤

1 , . . . ,Y
⊤

N )
⊤, and n =

∑N
i=1
∑q

j=1 ni,j. Under the
iclustering analysis framework, assume that data can be ‘‘decomposed’’ into Kr sample (row) groups and Kc covariate
column) groups. Note that advancing from many existing approaches, the numbers of two dimensional groups are not
re-specified. Denote t ′i,j,ms ∈ T = [0, 1] as the observed time points. If (sample i, covariate j) belongs to the kr th sample
roup and the kcth covariate group, then

Yi,j,m = g(kr ,kc )(ti,j,m) + ϵi,j,m, (1)

here g(kr ,kc )(t) is the unknown mean function, and ϵ′

i,j,ms are the random errors with mean zero.
For estimation, we adopt the basis expansion technique. Specifically, denote Up(t) = (U1,p(t), . . . ,Up,p(t))⊤ as the

ollection of p rescaled basis functions. In the literature, there are extensive studies on choosing the form and number of
asis functions [32], which will not be reiterated here. In our numerical study, we adopt B-spline basis functions of order
= 3. Let gi,j(t) be the unknown mean function for the jth covariate of the ith sample, then we have

gi,j(t) ≈ U⊤

p (t)βi,j,

here βi,j = (βi,j,1, . . . , βi,j,p)⊤ is the vector of unknown coefficients. Further denote Ui,j = (Up(ti,j,1), . . . ,Up(ti,j,ni,j ))
⊤. For

stimation (without clustering), consider the objective function

Q (β) =
1
2
∥Y − Uβ∥

2
2 +

1
2
γ1β

⊤Mβ =
1
2

N∑
i=1

q∑
j=1

(
∥Yi,j − Ui,jβi,j∥

2
2 + γ1β

⊤

i,jDβi,j

)
, (2)

where U = diag(U1,1, . . . ,U1,q, . . . ,UN,q), β = (β⊤

1,1, . . . ,β
⊤

1,q, . . . ,β
⊤

N,q)
⊤, M = diag(D, . . . ,D), D = δ⊤δ, δ is a (p− 2)× p

matrix representing the second order differential operator, and γ1 is a non-negative tuning parameter. In this objective
function, the first term is the lack-of-fit, and the penalty term controls the smoothness of estimation.

2.2. Biclustering via penalized fusion

Under the clustering via penalized fusion framework, two samples (covariates) belong to the same cluster if and only if
they have the same regression coefficients. As such, clustering amounts to determining whether two samples (covariates)
have the same estimated coefficients. For samples i1, i2 ∈ {1, . . . ,N}, denote β

(r)
i1
,β

(r)
i2

as the length p × q vectors of
coefficients. For covariates j1, j2 ∈ {1, . . . , q}, denote β

(c)
j1
,β

(c)
j2

as the length p×N vectors of coefficients. For estimating β
and hence determining the clustering structure, we propose minimizing the objective function:

L(β) = Q (β) +

∑
1≤i1<i2≤N

pτ (∥β
(r)
i1

− β
(r)
i2

∥2, γ2) +

∑
1≤j1<j2≤q

pτ (∥β
(c)
j1

− β
(c)
j2

∥2, (N/q)1/2γ2). (3)

ere pτ (, ) is a penalty function, τ is a regularization parameter, ∥ · ∥2 is the ℓ2 norm, and γ2 is a data-dependent tuning
arameter. (N/q)1/2 is added to make the two penalties comparable. In our numerical study, we adopt MCP [47], that is,
τ (t, γ ) = γ

∫ t
0 (1−x/(τγ ))+dx with τ > 1. Here (x)+ = x if x > 0, and (x)+ = 0 otherwise. Note that SCAD [14] and some

ther penalties are also applicable. Denote the estimator as β̂. Let {α̂
(r)
1 , . . . , α̂

(r)
K̂r

} be the distinct values of β̂
(r)
i ’s. Similarly,

et {α̂
(c)
1 , . . . , α̂

(c)
K̂c

} be the distinct values of β̂
(c)
j ’s. We can then obtain the block structure of β̂ by {α̂

(r,c)
1,1 , . . . , α̂

(r,c)
K̂r ,K̂c

}, which

re the distinct values of β̂i,j, and set K̂b = K̂r × K̂c .
In (3), penalty is imposed to the norms of all pairwise differences to promote equality, as in ‘‘standard’’ penalized

usion [8]. Here it is noted that, as in [8], since there is no information on the order of samples/covariates, all pairwise
ifferences are taken, which differs from, for example, fused Lasso and other fused penalizations. Different from [8],
s clustering needs to be conducted in both the sample and covariate dimensions, two fusion penalties are imposed,
romoting equality in two directions. It is also noted that each specific coefficient shows up in three different penalties.
s to be shown below, with properly chosen tunings, there is not an over penalization problem. In addition, it is not rare
o have a parameter involved in two or more penalties [7].

The proposed approach involves two tunings, which have ‘‘ordinary’’ implications, with one controlling smoothness
nd the other determining the structure of clustering. One possibility is to conduct a two-dimensional grid search. Here
e adopt the alternative proposed in [48], which has two steps and a lower computational cost. In particular, in the first
tep, we set γ2 = 0 and select the optimal γ1 by minimizing:

BIC(γ1) =

N∑
i=1

q∑
j=1

{
log
(

∥Yi,j − ĝi,j∥2
2

ni,j

)
+

log(ni,j)
ni,j

dfi,j

}
,

here df = trace
{
U (U⊤U + γ D)−1U⊤

}
and ĝ = (ĝ (t ), . . . , ĝ (t ))⊤ with ĝ (t) = U⊤(t)β̂ .
i,j i,j i,j i,j 1 i,j i,j i,j i,j,1 i,j i,j,ni,j i,j p i,j

3
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In the second step, we fix the value of γ1 at the optimal and select γ2 by minimizing

BIC(γ2) = log
(

∥Y − ĝ∥
2
2

Nq

)
+

log(Nq)
Nq

df,

where df = (K̂r K̂c/Nq)
∑N

i=1
∑q

j=1 dfi,j and ĝ = (ĝ⊤

1,1, . . . , ĝ
⊤

N,q)
⊤.

2.3. Computation

We develop an effective algorithm based on the ADMM technique. Specifically, we first reformulate (3) as

argmin Q (β) +

∑
δ∈∆(r)

pτ (∥η
(r)
δ ∥2, γ2) +

∑
δ∈∆(c)

pτ (∥η
(c)
δ ∥2, (N/q)1/2γ2),

subject to β
(r)
i1

− β
(r)
i2

= η
(r)
δ , β

(c)
j1

− β
(c)
j2

= η
(c)
δ ,

here ∆(r)
= {δ = (i1, i2) : 1 ≤ i1 < i2 ≤ N} and ∆(c)

= {δ = (j1, j2) : 1 ≤ j1 < j2 ≤ q}. Optimizing the constrained
bjective function is equivalent to optimizing the augmented Lagrangian function:

Lθ (β,Hr ,Hc,Λr ,Λc) =
1
2
∥Y − Uβ∥

2
2 +

1
2
γ1β

⊤Mβ +

∑
δ∈∆(r)

pτ (∥η
(r)
δ ∥2, γ2) +

∑
δ∈∆(r)

λ
(r)⊤
δ (η(r)

δ − β
(r)
i1

+ β
(r)
i2
)

+
θ

2

∑
δ∈∆(r)

∥η
(r)
δ − β

(r)
i1

+ β
(r)
i2

∥
2
2 +

∑
δ∈∆(c)

pτ (∥η
(c)
δ ∥2, (N/q)1/2γ2)

+

∑
δ∈∆(c)

λ
(c)⊤
δ (η(c)

δ − β
(c)
j1

+ β
(c)
j2
) +

θ

2

∑
δ∈∆(c)

∥η
(c)
δ − β

(c)
j1

+ β
(c)
j2

∥
2
2,

(4)

here θ is a small positive constant, Hr = (η(r)
(1,2), . . . , η

(r)
(N−1,N)), Hc = (η(c)

(1,2), . . . , η
(c)
(q−1,q)), Λr = (λ(r)

(1,2), . . . ,λ
(r)
(N−1,N)), and

c = (λ(c)
(1,2), . . . ,λ

(c)
(q−1,q)). Here we introduce the dual variables λ

(r)
δ and λ

(c)
δ corresponding to the pair δ in ∆(r) and ∆(c),

nd the cardinality of ∆(r) and ∆(c) are denoted by |∆(r)
| and |∆(c)

|.
We consider an iterative algorithm, where the updates in step m + 1 are:

β(m+1)
= argmin

β

Lθ
(
β,H(m)

r ,H(m)
c ,Λ(m)

r ,Λ(m)
c

)
, H(m+1)

r = argmin
Hr

Lθ
(
β(m+1),Hr ,Λ

(m)
r

)
,

H(m+1)
c = argmin

Hc

Lθ
(
β(m+1),Hc,Λ

(m)
c

)
, λ

(r)(m+1)
δ = λ

(r)(m)
δ + θ

(
η
(r)(m+1)
δ − β

(r)(m+1)
i1

+ β
(r)(m+1)
i2

)
, δ ∈ ∆(r),

λ
(c)(m+1)
δ = λ

(c)(m)
δ + θ

(
η
(c)(m+1)
δ − β

(c)(m+1)
j1

+ β
(c)(m+1)
j2

)
, δ ∈ ∆(c).

(5)

More specifically, when optimizing over β, we consider

f (β) =
1
2
∥Y − Uβ∥

2
2 +

1
2
γ1β

⊤Mβ +
θ

2

(∑
δ∈∆(r)

∥η̃
(r)(m)
δ − B(r)

δ β∥
2
2 +

∑
δ∈∆(c)

∥η̃
(c)(m)
δ − B(c)

δ β∥
2
2

)
, (6)

here η̃
(r)
δ = η

(r)
δ +

1
θ
λ
(r)
δ , η̃(c)

δ = η
(c)
δ +

1
θ
λ
(c)
δ , B(r)

δ = (e(r)i1
− e(r)i2

)⊤ ⊗ Iqp, B
(c)
δ = IN ⊗ [(e(c)j1

− e(c)j2
)⊤ ⊗ Ip], e

(r)
i is an N × 1 zero

ector except that its ith element is 1, e(c)j is a q×1 zero vector except that its jth element is 1, ⊗ is the Kronecker product,
nd Ip is a p×p identity matrix. Denote Br = (B(r)⊤

(1,2), . . . ,B
(r)⊤
(N−1,N))

⊤, Bc = (B(c)⊤
(1,2), . . . ,B

(c)⊤
(q−1,q))

⊤, H̃r = (η̃(r)
(1,2), . . . , η̃

(r)
(N−1,N)),

nd H̃c = (η̃(c)
(1,2), . . . , η̃

(c)
(q−1,q)). Then the update for β is

β(m+1)
=

(
U⊤U + γ1M + θB⊤

r Br + θB⊤

c Bc

)−1(
U⊤Y + θB⊤

r vec
(
H̃(m)

r

)
+ θB⊤

c vec
(
H̃(m)

c

))
, (7)

here vec(Z) is the vectorization of matrix Z by columns.
For Hr , we consider

f (η(r)
δ ) = pτ (∥η

(r)
δ ∥2, γ2) +

θ

2

η(r)
δ − β

(r)(m+1)
i1

+ β
(r)(m+1)
i2

+ λ
(r)(m)
δ /θ

2

2
. (8)

enote z (r)(m+1)
δ = β

(r)(m+1)
i1

− β
(r)(m+1)
i2

− λ
(r)(m)
δ /θ . With the KKT conditions of (8), we can get a closed form solution of

Hr :

η
(r)(m+1)
δ =

⎧⎪⎨⎪⎩
z (r)(m+1)
δ , if ∥z (r)(m+1)

δ ∥2 ≥ τγ2,

τθ
(1 −

γ2/θ
(r)(m+1) )+z

(r)(m+1)
δ , if ∥z (r)(m+1)

δ ∥2 < τγ2.
(9)
τθ − 1 ∥zδ ∥2

4
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Similarly, denote z (c)(m+1)
δ = β

(c)(m+1)
j1

− β
(c)(m+1)
j2

− λ
(c)(m)
δ /θ , and we can get a closed form solution of Hc :

η
(c)(m+1)
δ =

⎧⎪⎨⎪⎩
z (c)(m+1)
δ , if ∥z (c)(m+1)

δ ∥2 ≥ (N/q)1/2τγ2,
τθ

τθ − 1
(1 −

(N/q)1/2γ2/θ

∥z (c)(m+1)
δ ∥2

)+z
(c)(m+1)
δ , if ∥z (c)(m+1)

δ ∥2 < (N/q)1/2τγ2.
(10)

Consider the initial values β(0)
= (U⊤U + γ1M)−1U⊤Y, η(r)(0)

δ = β
(r)(0)
i1

−β
(r)(0)
i2

, and η
(c)(0)
δ = β

(c)(0)
j1

−β
(c)(0)
j2

, and Λ
(0)
r and

Λ
(0)
c are set as zero. The ADMM based algorithm is summarized in Algorithm 1.

Algorithm 1
Input:

Response vector Y, basis expansion design matrix U, and difference matrix M;
Tuning parameters γ1 and γ2. Specific to MCP, regularization parameter τ ;

Output:
Coefficient vector β, splitting variables Hr and Hc , and dual variables Λr and Λc ;

1: repeat
2: for m = 0, 1, 2 · · · do
3: Update β by (7).
4: Update Hr by (9).
5: Update Hc by (10).
6: Update Λr and Λc by (5).
7: end for
8: until the stopping criteria are met, which are set as ||r(m+1)

r ||2 ≤ ϵ
pri
1 , ||r(m+1)

c ||2 ≤ ϵ
pri
2 , ||s(m+1)

r ||2 ≤ ϵdual1 , and
||s(m+1)

c ||2 ≤ ϵdual2 in our numerical study.

Proposition 1. Denote the two primal residuals as r(m+1)
r = Brβ

(m+1)
− vec(H(m+1)

r ) and r(m+1)
c = Bcβ

(m+1)
− vec(H(m+1)

c ),
nd the two dual residuals as s(m+1)

r = θB⊤
r

[
vec(H(m+1)

r ) − vec(H(m)
r )
]
and s(m+1)

c = θB⊤
c

[
vec(H(m+1)

c ) − vec(H(m)
c )
]
. Then

lim
m→∞

∥r(m+1)
r ∥

2
2 = 0, lim

m→∞
∥r(m+1)

c ∥
2
2 = 0, lim

m→∞
∥s(m+1)

r + s(m+1)
c ∥

2
2 = 0.

This result establishes convergence of the proposed algorithm. In numerical analysis, we stop the algorithm and
conclude convergence when ∥r(m+1)

r ∥2 ≤ ϵ
pri
1 , ∥r(m+1)

c ∥2 ≤ ϵ
pri
2 , ∥s(m+1)

r ∥2 ≤ ϵdual1 and ∥s(m+1)
c ∥2 ≤ ϵdual2 . Following [5],

e set the tolerance parameters as follows:

ϵ
pri
1 =

√
|∆(r)|pqϵabs + ϵrelmax

{
∥Brβ

(m+1)
∥2, ∥vec(H(m+1)

r )∥2

}
,

ϵ
pri
2 =

√
|∆(c)|pNϵabs + ϵrelmax

{
∥Bcβ

(m+1)
∥2, ∥vec(H(m+1)

c )∥2

}
,

ϵdual1 =

√
Nqpϵabs + ϵrel∥B⊤

r vec(Λ
(m+1)
r )∥2, ϵdual2 =

√
Nqpϵabs + ϵrel∥B⊤

c vec(Λ
(m+1)
c )∥2.

(11)

Here ϵabs and ϵrel are predetermined small values, for example 10−3. In all of our numerical analysis, convergence is
satisfactorily achieved within a small to moderate number of iterations. The code and example are publicly available at
https://github.com/ruiqwy/Biclustering.

2.4. Statistical properties

For a vector z = (z1, . . . , zs)⊤ ∈ Rs, let ∥z∥∞ = max1≤l≤s |zl|. For a matrix Zs×h, let ∥Z∥2 = maxv∈Rh,∥v∥2=1 ∥Zv∥2

and ∥Z∥∞ = max1≤i≤s
∑h

j=1 |Zi,j|. For any two sequences of real numbers {an} ≥ 1 and {bn} ≥ 1, denote bn ≪ an if
n/an = o(1). Let r be a positive integer, v ∈ (0, 1], and κ = r + v > 1.5. Let H be the collection of functions g on
= [0, 1], where the rth derivative g (r) exists and satisfies the Lipschitz condition with order v:

|g (r)(z1) − g (r)(z2)| ≤ C |z1 − z2|v, 0 ≤ z1, z2 ≤ 1,

and C is a positive constant.
Define the following collections of index sets for clustering memberships: G(r)

= (G(r)
1 , . . . , G

(r)
Kr ) for samples, G(c)

=

(G(c)
1 , . . . , G

(c)
Kc ) for covariates, and G(r,c)

= (G(r,c)
1,1 , . . . , G

(r,c)
kr ,kc , . . . , G

(r,c)
Kr ,Kc ) for both samples and covariates. Define MG =

{β ∈ RNqp
: βi1,j1 = βi2,j2 , for any (i1, j1), (i2, j2) ∈ G(r,c)

kr ,kc , 1 ≤ kr ≤ Kr , 1 ≤ kc ≤ Kc}. Let |G(r)
kr |, |G(c)

kc |, and |G(r,c)
kr ,kc |

be the sizes of G(r)
kr , G

(c)
kc , and G(r,c)

kr ,kc , respectively. Further define |G(r)
min| = min1≤kr≤Kr |G(r)

kr |, |G(c)
min| = min1≤kc≤Kc |G(c)

kc |, and
|G(r,c)

| = |G(r)
| × |G(c)

|. |G(r,c)
| can be defined accordingly. Let ρ(t) = γ−1p (t, γ ). Assume the following conditions.
min min min max τ

5
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(C1) gkr ,kc ∈ H for all kr ∈ {1, . . . , Kr}, kc ∈ {1, . . . , Kc}, and |G(r,c)
max |

1/(2κ)
≪ p ≪ |G(r,c)

min |
1/3

.
(C2) The distribution of ti,j,m’s, i ∈ {1, . . . ,N}, j ∈ {1, . . . , q},m ∈ {1, . . . , ni,j} follows a density function fT , which is

absolutely continuous. There exist constants c1 and C1 such that 0 < c1 ≤ mint∈T fT (t) ≤ maxt∈T fT (t) ≤ C1 < ∞.
(C3) ni,j’s are uniformly bounded for all i ∈ {1, . . . ,N}, j ∈ {1, . . . , q}.
(C4) pτ (t, γ ) is symmetric, non-decreasing, and concave in t for t ∈ [0,∞]. There exists a constant 0 < a < ∞ such

that ρ(t) is a constant for all t ≥ aγ , and ρ(0) = 0. ρ ′(t) exists and is continuous except for a finite number of t
and ρ ′(0+) = 1.

(C5) Let ϵi,j = (ϵi,j,1, . . . , ϵi,j,ni,j )
⊤, where ϵi,j,m’s are independent across (i, j) (among different individual observational

vectors) and correlated across m (within the same (i, j)). Furthermore, there exist F > 0 and c2 > 0, such that for
all i ∈ {1, . . . ,N} and j ∈ {1, . . . , q},

E
(
exp{F |n−1

i,j ϵ⊤

i,jϵi,j|
1/2

}
)

≤ c2.

imilar conditions have been assumed in the literature. The first condition in (C1) ensures that the Hölder’s condition is
atisfied [36]. The second condition in (C1) pertains to the growth rate of the number of internal knots, in a way similar
o [25] and [24]. Condition (C2) assumes the boundedness of the density function, similarly to [48] and others. Conditions
imilar to (C3) have been commonly made. In the analysis of high-dimensional data, conditions similar to (C4) have been
ommon, and it is easy to verify that MCP and SCAD satisfy (C4). Condition (C5) gives the boundedness condition for the
rror terms, and a similar condition can be found in [11].
When the true clustering structure is known, the oracle estimator for β can be defined as

β̂
or

= argmin
β∈MG

1
2

Kr∑
kr=1

Kc∑
kc=1

∑
(i,j)∈G(r,c)

kr ,kc

{
∥Yi,j − Ui,jβi,j∥

2
2 + γ1β

⊤

i,jDβi,j

}
,

here ĝor
(kr ,kc ) is defined as the oracle estimator of g(kr ,kc ) based on β̂

or
. Let β∗ be the underlying true coefficient vector

nd g∗

(kr ,kc ) be the true value of g(kr ,kc ). For any L2-integrable function g , denote ∥g∥ = (
∫
t∈T g2(t)fT (t)dt)1/2.

heorem 1. Assume that (C1)–(C5) hold. If γ1 = o(|G(r,c)
min |

−1/2
) and p log(Nq) ≪ |G(r,c)

min |, then with probability at least
− 3KrKcp/(Nq),

sup
1≤i≤N,1≤j≤q

∥β̂
or
i,j − β∗

i,j∥2 ≤ ψ, sup
1≤kr≤Kr ,1≤kc≤Kc

∥ĝor
(kr ,kc ) − g∗

(kr ,kc )∥ ≤ ψ,

where ψ = C∗
(
p log(Nq)/|G(r,c)

min |
)1/2, and C∗ is a large constant.

This theorem establishes consistency of the oracle estimates with a high probability. Denote b = min(kr ,kc )̸=(k′r ,k′c )
∥g∗

(kr ,kc ) − g∗

(k′r ,k′c )
∥. We can further establish the following result.

Theorem 2. Assume that (C1)–(C5) and conditions in Theorem 1 hold. If b ≫ γ2|G
(c)
min|

−1/2
, b ≫ (N/q)1/2γ2|G

(r)
min|

−1/2
, and

2 ≫
(
pq
)1/2 log(Nq)/min{|G(r)

min|, |G
(c)
min|}, then there exists a local minimizer β̂ of L(β) satisfying

P(β̂ = β̂
or
) → 1 as N, q → ∞.

This theorem establishes that the oracle estimator is a local minimizer of the objective function with a high probability.
The estimation consistency along with the separateness of the true functions can lead to the clustering consistency.

3. Simulation

We conduct simulation to assess performance of the proposed approach and gauge against the following alternatives:
(a) the bKmeans method [1], which first fits each curve using B-splines and then clusters the estimated coefficients using
the k-means technique by rows and columns, (b) the funHDDC method [33], which has been developed for multivariate
functional data clustering based on latent mixture models. It has been applied to longitudinal data, and (c) the funLBM
method [4], which has been developed for functional data biclustering based on latent block models. Here we note that
the proposed and funLBM methods conduct biclustering directly, whereas the bKmeans and funHDDC methods have been
originally designed for one-way clustering–hence they are applied twice to achieve both row and column clusterings. In
addition, the funHDDC and funLBMmethods are not directly applicable to functional data with unequal measurements. We
apply imputation [26] to tackle this problem. As discussed in Section 1, biclustering methods for functional data are very
limited. It is possible to modify other existing one-way functional clustering methods to achieve biclustering, however,
this demands additional methodological developments. The three alternatives considered here have been chosen because
of their closely related frameworks and competitive performance.

In evaluation, we examine both clustering and estimation accuracy. Specifically, when examining clustering accuracy,
we consider the estimated numbers of row clusters K̂ , column clusters K̂ , and biclusters K̂ . In addition, we use the Rand
r c b

6
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able 1
xample 1: Mean, median, and standard error (SE) of K̂r , K̂c , and K̂b as defined in Section 2, as well as the percentage of identifying the corresponding
rue numbers based on 100 replicates.

N Method K̂r K̂c K̂b

Mean Median SE Per Mean Median SE Per Mean Median SE Per

30 Proposed 2.83 3.00 0.53 0.90 2.83 3.00 0.53 0.90 8.29 9.00 2.18 0.90
bKmeans 2.76 3.00 0.64 0.66 1.13 1.00 0.46 0.05 3.09 3.00 1.34 0.03
funHDDC 2.63 2.00 0.86 0.28 2.76 3.00 0.43 0.76 7.27 6.00 2.70 0.21
funLBM 4.66 5.00 0.64 0.09 4.43 5.00 0.83 0.22 20.88 25.00 5.31 0.09

60 Proposed 2.91 3.00 0.43 0.93 2.90 3.00 0.41 0.94 8.61 9.00 1.74 0.93
bKmeans 2.86 3.00 0.57 0.66 1.18 1.00 0.54 0.07 3.43 3.00 1.97 0.05
funHDDC 2.20 2.00 0.64 0.04 2.99 3.00 0.10 0.99 6.58 6.00 1.92 0.04
funLBM 3.42 3.00 0.64 0.66 3.24 3.00 0.55 0.82 11.15 9.00 3.31 0.55

90 Proposed 2.93 3.00 0.36 0.96 2.93 3.00 0.36 0.96 8.71 9.00 1.45 0.96
bKmeans 2.83 3.00 0.51 0.74 1.23 1.00 0.58 0.08 3.51 3.00 1.87 0.08
funHDDC 2.14 2.00 0.38 0.12 2.96 3.00 0.20 0.96 6.33 6.00 1.17 0.11
funLBM 3.25 3.00 0.46 0.76 3.30 3.00 0.54 0.74 10.68 9.00 2.03 0.52

index and adjusted Rand index to assess the accuracy of clustering, including RIr and ARIr for row clustering, RIc and ARIc
or column clustering, and RIb and ARIb for biclustering. The Rand index is defined by RI = (TP+TN)/(TP+ FP+ FN+TN),
here for example TP is the true positive count, defined as the number of sample pairs from the same cluster and assigned
o the same cluster, and the other counts can be defined accordingly. As the Rand index tends to be large even under
andom clusterings, we also examine the adjusted Rand index defined as ARI = (RI− E(RI))/(max(RI)− E(RI)), which can
artly correct this problem. To evaluate estimation accuracy, we examine the integrated squared error (ISE) defined as

ISE =
1
n

Kr∑
kr=1

Kc∑
kc=1

∑
(i,j)∈G(r,c)

kr ,kc

nij∑
m=1

{
g(kr ,kc )(ti,j,m) − ĝi,j(ti,j,m)

}2
.

We consider a total of Kb = 9 biclusters, which are formed by Kr = 3 sample (row) clusters and Kc = 3 covariate
column) clusters. Yi,j,m = g(kr ,kc )(ti,j,m) + ϵi,j,m with ti,j,m’s, m ∈ {1, . . . , 10}, equally spaced on [0, 1]. The nine true
unctional forms are g(1,1)(t) = cos(2π t), g(2,1)(t) = 1−2exp(−6t), g(3,1)(t) = −1.5t , g(1,2)(t) = 1+sin(2π t), g(2,2)(t) = 2t2,
g(3,2)(t) = t + 1, g(1,3)(t) = 2

(
sin(2π t) + cos(2π t)

)
, g(2,3)(t) = 1 + t3, and g(3,3)(t) = 2

√
t + 1. They are also graphically

resented in Fig. 1. To better mimic real data, we allow a certain proportion (ζ ) of the curves from each bicluster to
ave 20% missing measurements. When implementing the proposed approach, we choose smoothing splines with the
umber of internal knots J = 3. We also fix θ = 1 and τ = 3. In what follows, under Examples 1 and 2, N > q, whereas
nder Example 3, N = q. Under Examples 1–3, the random errors are independent, whereas under Example 4, they
re correlated. Note that under Examples 1–4, simulation results are calculated based on automatic cluster selection.
xample 5 is designed to investigate the performance of these methods when the numbers of clusters are correctly
respecified. A total of 100 replicates are simulated under each setting.

xample 1. N = 30, 60, and 90. q = 9. The clusters are balanced, with each row cluster containing N/3 samples and
each column cluster containing q/3 covariates. ζ = 0.3. The random errors are iid N (0, 0.62).

Example 2. The settings are the same as in Example 1, except that the clusters are unbalanced. The row clusters have
sizes 1:2:3, and the column clusters have sizes 2:3:4.

Example 3. Set (N, q) = (30, 30), (39, 39), (45, 45), ζ = 0.3 and 0.4. The rest are the same as in Example 1.

Example 4. The settings are similar to those under Example 1. The random errors are correlated with an AR(1) correlation
structure, where AR stands for auto-correlation. Consider AR coefficient φ = 0.2 and 0.8, representing weak and strong
correlations.

Example 5. The settings are the same as those in Example 1. The difference is that the numbers of clusters are correctly
prespecified instead of being selected by the BIC criterion.

Results for Example 1 are presented in Figs. 1 and 2 as well as Tables 1 and 2. More specifically, in Fig. 1, we show
the true functions for all clusters as well as sample observed data and estimated functions. In Table 1, we summarize the
numbers of identified row and column clusters as well as biclusters. In Table 2, we summarize the Rand and adjusted
Rand index values. In Fig. 2, we present the boxplots of ISE (note that different panels have different ranges for the
Y-axis). Results for Examples 2–5 are presented in the Supplementary section. Although different examples have different
numerical results, overall, the advantage of the proposed approach is clearly observed. Consider for example Table 1 with
7
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able 2
xample 1: Mean and standard error (shown in parentheses) of RIr , ARIr , RIc , ARIc , RIb , and ARIb based on 100 replicates.
N Method RIr ARIr RIc ARIc RIb ARIb
30 Proposed 0.940 (0.189) 0.911 (0.278) 0.936 (0.203) 0.910 (0.279) 0.927 (0.238) 0.909 (0.281)

bKmeans 0.860 (0.173) 0.740 (0.290) 0.296 (0.163) 0.052 (0.194) 0.673 (0.174) 0.307 (0.167)
funHDDC 0.744 (0.031) 0.493 (0.074) 0.940 (0.107) 0.880 (0.215) 0.889 (0.051) 0.598 (0.120)
funLBM 0.913 (0.053) 0.786 (0.109) 0.913 (0.064) 0.746 (0.153) 0.951 (0.029) 0.708 (0.113)

60 Proposed 0.966 (0.138) 0.947 (0.208) 0.963 (0.152) 0.945 (0.212) 0.959 (0.177) 0.943 (0.216)
bKmeans 0.887 (0.132) 0.780 (0.248) 0.316 (0.195) 0.077 (0.239) 0.704 (0.142) 0.339 (0.191)
funHDDC 0.767 (0.021) 0.546 (0.049) 0.998 (0.025) 0.995 (0.050) 0.922 (0.014) 0.692 (0.044)
funLBM 0.918 (0.110) 0.828 (0.221) 0.929 (0.119) 0.840 (0.257) 0.953 (0.052) 0.796 (0.198)

90 Proposed 0.978 (0.117) 0.966 (0.176) 0.975 (0.131) 0.965 (0.178) 0.971 (0.154) 0.964 (0.180)
bKmeans 0.886 (0.134) 0.778 (0.251) 0.342 (0.226) 0.109 (0.279) 0.709 (0.152) 0.358 (0.227)
funHDDC 0.769 (0.017) 0.551 (0.040) 0.990 (0.049) 0.980 (0.098) 0.919 (0.025) 0.686 (0.061)
funLBM 0.909 (0.121) 0.813 (0.241) 0.908 (0.130) 0.793 (0.276) 0.944 (0.056) 0.764 (0.210)

Fig. 1. Example 1: Curves of observed data (black dotted), estimated (blue solid) by the proposed method, and true (red solid) functions with (a)
N = 30 and (b) N = 90 for one replicate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

N = 30. The proposed approach has the mean number of row clusters 2.83, compared to 2.76, 2.63, and 4.66 of the
three alternatives. When N = 90, the proposed approach has the mean number of biclusters 8.71, compared to 3.51,
.33, and 10.68 of the three alternatives. The improved clustering accuracy is further proved by the Rand index values in
able 2. For example with N = 90, the adjusted Rand index value for biclustering with the proposed approach is 0.964,
ompared to 0.358, 0.686, and 0.764 with the three alternatives. Fig. 2 shows that as N increases, estimation accuracy of
he proposed approach (and two alternatives) increases. Under all three N values, the proposed approach has significantly
maller ISE values. Moreover, comparing the results of Example 5 with Example 1, we observe similar performance and
hat the proposed approach still performs better when the numbers of clusters are correctly prespecified.

. Applications

Here we analyze two time-course gene expression data. Although in a sense the data characteristics are similar, the two
ata analyses may serve different purposes. In particular, the first dataset is ‘‘older’’, which has been analyzed multiple
8
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Fig. 2. Example 1: Boxplots of ISE with (a) the proposed method, (b) bKmeans, (c) funHDDC, and (d) funLBM.

imes in the literature, and has a clearer sample clustering structure. In contrast, the second dataset is more recent, and
ts analysis may lead to a higher practical impact.

.1. T-cell data

This data has been generated in a study of T-cell activation [31]. It is publicly available in the R package longitudinal
http://www.strimmerlab.org/software/longitudinal/) and contains two subsets: tcell.10 and tcell.34. The first subset
ontains measurements for 10 samples and 58 genes at 10 unequally spaced time points, t ∈ {0, 2, 4, 6, 8, 18, 24, 32,
48, 72}, whereas the second subset contains measurements for 34 samples and the same genes at the same time points.
In [31], the distinctions between the two subsets have been noted, and they have been combined for analysis. Prior to
analysis, we conduct data processing, including gene expression normalization using the method developed in [29] and
linearly transforming the observed times to [0, 1], and set the knots at 0.06, 0.2, and 0.4 as well as the order as 3.

The proposed approach identifies two sample clusters, with sizes 10 and 34, which exactly match the original subset
structure. The distinctions of the samples in the two subsets have been noted in [31]. As such, they are supposed to belong
to different clusters. In this sense, our ‘‘finding’’, although as expected, is re-assuring. In addition, eight gene clusters are
identified, among which there are four trivial clusters with sizes one. The four non-trivial clusters have sizes 27, 18, 5, and
4. Detailed information on the gene clusters is available from the authors. The eight non-trivial biclusters are presented in
Fig. 3. Biclusters 1–4 correspond to tcell.10, and the rest correspond to tcell.34. It is observed that the estimated functions
clearly differ across biclusters. The observed temporal trends are highly similar to those reported in [28], which provides
support to the validity of our approach.

The three alternatives are also applied. The bKmeans approach identifies three sample clusters (with sizes 10, 17, and
17) and four gene clusters (with sizes 9, 15, 19, and 15). Compared to the proposed approach, the adjusted Rand index
values are 0.441 (sample), 0.619 (gene), and 0.430 (bicluster). The funHDDC approach identifies two sample clusters (with
sizes 10 and 34) and two gene clusters (with sizes 9 and 49). Compared to the proposed approach, the adjusted Rand
index values are 1.000 (sample), 0.286 (gene), and 0.452 (bicluster). The funLBM approach identifies two sample clusters
(with sizes 10 and 34) and six gene clusters (with sizes 9, 4, 12, 5, 18, and 10). Compared to the proposed approach, the
adjusted Rand index values are 1.000 (sample), 0.586 (gene), and 0.646 (bicluster). Unlike for the simulated data, it is
difficult to objectively evaluate the accuracy of clustering. However, for the proposed approach, the matching with the
original sample distinction and published findings can provide a strong support, which is not shared by the alternatives.

4.2. Vaccine data

This data is generated in a relative recent study [43] and available at GEO with identifier GSE124533. The study settings
have been described in detail in [43]. Briefly, it concerns with the time course of whole blood gene expressions, and the
samples are healthy adults residing in an inpatient unit. The samples have been randomized into three protocols (305 A,
305B and 305C). Within each protocol, samples have been randomized to receive immunization via either vaccine or
saline placebo. The treatments have been referred to as YFV and VZV (under 305 A), HBV1 and HBV3 (under 305B), and
TIV and ATIV (under 305C). In this experiment, gene expression levels are measured at t ∈ {1, 2, 3, 4, 5, 7, 14, 21, 28}
days after immunization. A total of 43 genes have been studied, which are selected from two gene modules defined in
the published literature [6,22]. Prior to analysis, gene expression normalization, rescaling of the time points (to the unit
interval), and the selection of knots order are conducted in a similar way as in the previous data analysis.

Two sets of analysis are conducted. In the first set, we focus on the samples under 305 A, which contain 20 samples
treated with VZV and 20 with YFV. In the second set, we pool all 122 samples from the three protocols. We note that
9
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Fig. 3. Analysis of T-cell data: Curves of observed data (black dotted) and estimated functions (blue solid) for the eight non-trivial bicluster, as well
as yellow points indicating the estimated values at t ∈ {0, 2, 4, 6, 8, 18, 24, 32, 48, 72} by the proposed method. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)

lthough the gene time courses have been analyzed in [43], there is insufficient attention to clustering. Complementary to
he existing literature, our clustering analysis can potentially review sample heterogeneity as well as coordination among
enes.
Results for the first set of analysis are presented in Fig. 5, where we observe two sample clusters and two gene clusters,

eading to four biclusters. Here the two sample clusters match the VZV and YFV experimental conditions, which provides
upport to the validity of our analysis. The two gene clusters contain 27 and 16 members, respectively, which are very
lose to the module structure. Fig. 5 shows that the temporal trends of the four clusters differ significantly, with the level
f variation and position of ‘‘peak’’ varying significantly. The observed trends are similar to those reported in [43]. We
lso refer to [43] for phamarcodynamic interpretations of the findings.
In the second set of analysis, we identify four sample clusters, with sizes 96, 5, 20, and 1, respectively. In what

ollows, we focus on the non-trivial clusters. Clusters 1 and 2 contain samples treated with VZV, HBV1, HBV3, ATIV,
nd TIV, and cluster 3 contains samples treated with YFV. In the original publication, there has been little attention to
ample similarity/difference across protocols. Our analysis may suggest the significant difference between YFV and other
reatments as well as the relative similarity of the five treatments (YFV excluded). Our analysis leads to two gene clusters,
ith sizes 25 and 18, respectively. This structure is again very similar to the module structure. The overall six non-trivial
iclusters are shown in Fig. 4, where we observe significant across-cluster differences. Among the six patterns, biclusters
and 6 are similar to those observed in the first set of analysis, where biclusters 1–4 are relatively different.
The three alternatives are also applied. The bKmeans approach identifies three sample clusters (with sizes 20, 27, and

5) and two gene clusters (with sizes 26 and 17). Compared to the proposed approach, the adjusted Rand index values
re 0.551 (sample), 0.907 (gene), and 0.666 (bicluster). The funHDDC approach identifies two sample clusters (with sizes
0 and 102) and three gene clusters (with sizes 26, 12 and 5). Compared to the proposed approach, the adjusted Rand
ndex values are 0.819 (sample), 0.774 (gene), and 0.758 (bicluster). The funLBM approach identifies four sample clusters
with sizes 20, 39, 24 and 39) and two gene clusters (with sizes 20, 23). Compared to the proposed approach, the adjusted
and index values are 0.276 (sample), 0.818 (gene), and 0.386 (bicluster).

. Discussion

In this article, we have conducted the biclustering analysis when functions (to be exact, their realizations at discrete
ime points), as opposed to scalars, are present. The data structure fits time-course gene expression and other experiments.
he analysis objective is considerably more complex than the biclustering analysis of scalars and one-way clustering of
10
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Fig. 4. Analysis of vaccine data with samples under all three protocols: Curves of observed data (black dotted) and estimated functions (blue solid)
for non-trivial clusters, as well as yellow points indicating the estimated values at t ∈ {1, 2, 3, 4, 5, 7, 14, 21, 28} by the proposed method. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

unctions. We have developed a novel approach based on the penalized fusion technique. Methodologically, it differs
ignificantly from the existing biclustering and fusion approaches. Theoretically, it has the much desired consistency
roperty, making it advantageous over some of the existing alternatives that do not have theoretical support. Numerically,
t has generated more accurate clustering and estimation in simulation and led to different findings in data analysis.

In our estimation, we have adopted the penalized smoothing technique. An alternative, which may be computationally
impler, is to take fewer basis functions, with which we can eliminate the smoothness penalty. Theoretically and
umerically, we expect similar performance. The fusion technique involves pairwise differences/penalties, which may
ncur higher computational cost when N and/or q are large. In our simulation, we have considered moderate values,
hich match our data analysis. It will be of interest to develop computationally more scalable approaches/algorithms, for
xample via model averaging. This is beyond our scope and will be postponed to the future. In data analysis, findings
ith certain support have been made. In the literature, most existing studies are on the ‘‘static’’ functionalities of genes.

t will be important to further understand the dynamics of gene expressions and more solidly interpret the findings.
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ppendix A. Proofs

roof of Proposition 1. By the definitions of H(m+1)
r and H(m+1)

c , for any Hr and Hc , we have

L
(
β(m+1),H(m+1),H(m+1),Λ(m),Λ(m)

)
≤ L

(
β(m+1),H ,H ,Λ(m),Λ(m)

)
.
θ r c r c θ r c r c

11
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c

L

Fig. 5. Analysis of vaccine data with samples under 305A: Curves of observed data (black dotted) and estimated functions (blue solid), as well as
yellow points indicating the estimated values at t ∈ {1, 2, 3, 4, 5, 7, 14, 21, 28} by the proposed method. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

et Ξ (β(m+1)) =

{
(Hr ,Hc) : Brβ

(m+1)
− vec(Hr ) = 0,Bcβ

(m+1)
− vec(Hc) = 0

}
and P =

∑
δ∈∆(r) pτ (∥η

(r)
δ ∥2, γ2) +∑

δ∈∆(c) pτ (∥η
(c)
δ ∥2, (N/q)1/2γ2). We can define

f (m+1)
= inf

Ξ (β(m+1))

{
1
2
∥Y − Uβ(m+1)

∥
2
2 +

1
2
γ1β

(m+1)⊤Mβ(m+1)
+ P

}
= inf

Ξ (β(m+1))
Lθ
(
β(m+1),Hr ,Hc,Λ

(m)
r ,Λ(m)

c

)
,

and then Lθ
(
β(m+1),H(m+1)

r ,H(m+1)
c ,Λ(m)

r ,Λ(m)
c

)
≤ f (m+1).

For any integer n, we have vec(Λ(m+n−1)
r ) = vec(Λ(m)

r ) + θ
∑n−1

i=1

[
vec(H(m+i)

r ) − Brβ
(m+i)

]
and vec(Λ(m+n−1)

c ) =

vec(Λ(m)
c ) + θ

∑n−1
i=1

[
vec(H(m+i)

c ) − Bcβ
(m+i)

]
, and then

Lθ
(
β(m+n),H(m+n)

r ,H(m+n)
c ,Λ(m+n−1)

r ,Λ(m+n−1)
c

)
=

1
2
∥Y − Uβ(m+n)

∥
2
2 +

1
2
γ1β

(m+n)⊤Mβ(m+n)
+ P +

{
vec(Λ(m)

r ) + θ

n−1∑
i=1

[
vec(H(m+i)

r ) − Brβ
(m+i)

]}⊤

×

[
vec(H(m+n)

r ) − Brβ
(m+n)

]
+

{
vec(Λ(m)

c ) + θ

n−1∑
i=1

[
vec(H(m+i)

c ) − Bcβ
(m+i)

]}⊤[
vec(H(m+n)

c ) − Bcβ
(m+n)

]
+
θ

2

vec(H(m+n)
r − Brβ

(m+n))
2

2

+
θ
vec(H(m+n)

− Bcβ
(m+n))

2
≤ f (m+n).
2 c
2

12
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S

r

F

T

w

ince the augmented Lagrangian function Lθ
(
β,Hr ,Hc,ΛrΛc

)
is differentiable with respect to β and is convex with

espect to each η
(r)
δ and η

(c)
δ . By Theorem 4.1 of [38], there exists a limit point of (β(m),H(m)

r ,H(m)
c ), denoted by (β∗,H∗

r ,H∗
c ).

Then we have

f ∗
= lim

m→∞
f (m+1)

= lim
m→∞

f (m+n)
= inf

Ξ (β∗)

{
1
2
∥Y − Uβ∗

∥
2
2 +

1
2
γ1β

∗⊤Mβ∗
+ P

}
.

or all t ≥ 0, we have

lim
m→∞

Lθ
(
β(m+n),H(m+n)

r ,H(m+n)
c ,Λ(m+n−1)

r ,Λ(m+n−1)
c

)
=

1
2
∥Y − Uβ∗

∥
2
2 +

1
2
γ1β

∗⊤Mβ∗
+ P + lim

m→∞
vec(Λ(m)

r )⊤
[
vec(H∗

r ) − Brβ
∗

]
+ (n −

1
2
)θ
vec(H∗

r ) − Brβ
∗

2

2

+ lim
m→∞

vec(Λ(m)
c )⊤

[
vec(H∗

c ) − Bcβ
∗

]
+ (n −

1
2
)θ
vec(H∗

c ) − Bcβ
∗

2

2

≤ f ∗.

hus

lim
m→∞

r(m+1)
r

2

2
=

Brβ
∗
− vec(H∗

r )
2

2
= 0, lim

m→∞

r(m+1)
c

2

2
=

Bcβ
∗
− vec(H∗

c )
2

2
= 0.

Besides, by the definition of β(m+1), we have that

∂Lθ
(
β(m+1),H(m+1)

r ,H(m+1)
c ,Λ(m)

r ,Λ(m)
c

)
/∂β

= −U⊤(Y − Uβ(m+1)) + γ1Mβ(m+1)
− θB⊤

r

[
vec(H(m)

r ) + vec(Λ(m)
r )/θ − Brβ

(m+1)
]

− θB⊤

c

[
vec(H(m)

c ) + vec(Λ(m)
c )/θ − Bcβ

(m+1)
]

= −U⊤(Y − Uβ(m+1)) + γ1Mβ(m+1)
− B⊤

r vec(Λ
(m)
r ) − θB⊤

r

[
vec(H(m)

r ) − Brβ
(m+1)

]
−B⊤

c vec(Λ
(m)
c ) − θB⊤

c

[
vec(H(m)

c ) − Bcβ
(m+1)

]
= −U⊤(Y − Uβ(m+1)) + γ1Mβ(m+1)

− B⊤

r vec(Λ
(m+1)
r ) + θB⊤

r

[
vec(H(m+1)

r ) − vec(H(m)
r )
]

−B⊤

c vec(Λ
(m+1)
c ) + θB⊤

c

[
vec(H(m+1)

c ) − vec(H(m)
c )
]

= 0.

Then we can obtain

s(m+1)
r + s(m+1)

c = U⊤(Y − Uβ(m+1)) − γ1Mβ(m+1)
+ B⊤

r vec(Λ
(m+1)
r ) + B⊤

c vec(Λ
(m+1)
c ).

By
Brβ

∗
− vec(H∗

r )
2

2
= 0 and

Bcβ
∗
− vec(H∗

c )
2

2
= 0, we have

lim
m→∞

∂Lθ
(
β(m+1),H(m+1)

r ,H(m+1)
c ,Λ(m)

r ,Λ(m)
c

)
/∂β

= −U⊤(Y − Uβ(m+1)) + γ1Mβ(m+1)
− B⊤

r vec(Λ
(m+1)
r ) − B⊤

c vec(Λ
(m+1)
c ) = 0.

Therefore limm→∞ s(m+1)
r + s(m+1)

c = 0. □

Let |G(r,c)∗
kr ,kc | =

∑
(i,j)∈G(r,c)

kr ,kc
ni,j and nm = maxi∈{1,...,N},j∈{1,...,q} ni,j < ∞. Then |G(r,c)

kr ,kc | ≤ |G(r,c)∗
kr ,kc | ≤ nm|G(r,c)

kr ,kc |. Denote the
number of internal knots as J and then J = p − d. Recall that b = min(kr ,kc )̸=(k′r ,k′c ) ∥g

∗

(kr ,kc ) − g∗

(k′r ,k′c )
∥.

Lemma 1. Under Condition (C1), there exists a spline approximation α∗⊤

kr ,kcUp(t) of the true function g∗

(kr ,kc )(t) for kr ∈

{1, . . . , Kr} and kc ∈ {1, . . . , Kc}, such that

sup
t∈T

|g∗

(kr ,kc )(t) − α∗⊤

kr ,kcUp(t)| = O(J−κ ).

Proof. Lemma 1 follows from Corollary 6.21 of [34]. This lemma has been used in a number of studies that involve spline
expansion [25,42]. We omit the proof here. □

Lemma 2. Under Conditions (C1)–(C3) and b ≫ J−κ , there exists a constant C2 > 0 such that for all (kr , kc) ̸= (k′
r , k

′
c), such

that

∥α∗

kr ,kc − α∗

k′r ,k′c
∥2 ≥

1
2
C−1/2
2 b,

hen N and q are sufficiently large.
13
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P

C

w

L

w

H

1

roof. By the triangular inequality, we have

∥(α∗

kr ,kc − α∗

k′r ,k′c
)⊤Up∥ ≥ ∥g∗

(kr ,kc ) − g∗

(k′r ,k′c )
∥ − ∥g∗

(kr ,kc ) − α∗⊤

kr ,kcUp∥ − ∥g∗

(k′r ,k′c )
− α∗⊤

k′r ,k′c
Up∥. (A.1)

Besides, by Theorem 5.4.2 of [13], Condition (C2), and the definition of the rescaled B-spline basis, for any vector α′

p×1,
there exists a constant C2 > 0 such that

∥α′⊤Up∥
2

≤ C2∥α
′
∥
2
2. (A.2)

ombining (A.1), (A.2), and Lemma 1, we have

∥α∗

kr ,kc − α∗

k′r ,k′c
∥2 ≥ C−1/2

2

{
∥g∗

(kr ,kc ) − g∗

(k′r ,k′c )
∥ − ∥g∗

(kr ,kc ) − α∗⊤

kr ,kcUp∥ − ∥g∗

(kr ,kc ) − α∗⊤

kr ,kcUp∥

}
≥ C−1/2

2 (b − 2M2J−κ ) > C−1/2
2 (b − 2 ×

1
4
b) =

1
2
C−1/2
2 b,

here the third inequality is obtained when N and q are sufficiently large since b ≫ J−κ . □

emma 3 (Bernstein’s Inequality, Lemma 2.2.11 in [39]). For independent random variables Y1, . . . , Yn with means 0 and
E|Yi|

m
≤ m!Mm−2vi/2 for some constants M, vi, and every m ≥ 2,

P(|Y1 + · · · + Yn| > x) ≤ 2 exp
{
−

1
2

x2

v + Mx

}
,

where v = v1 + · · · + vn.

Proof of Theorem 1. Given β̂
or

∈ MG, when the true block memberships G(r,c)
1,1 , . . . ,G

(r,c)
Kr ,Kc are known, the oracle

estimators for all βi,j’s are the same if (i.j) ∈ G(r,c)
kr ,kc . Thus we can explore the properties of β̂

or
by examining the properties

of the oracle common coefficient vector α̂
or

= (α̂or⊤
1,1 , . . . , α̂

or⊤
kr ,kc , . . . , α̂

or⊤
Kr ,Kc )

⊤, which is defined as

α̂
or

= argmin
α

Kr∑
kr=1

Kc∑
kc=1

L̂or (αkr ,kc ),

and

L̂or (αkr ,kc ) =
1
2
∥Y(kr ,kc ) − U(kr ,kc )αkr ,kc∥

2
2 + γ1|G

(r,c)
kr ,kc |α

⊤

kr ,kcDαkr ,kc ,

where Y(kr ,kc ) = vec{Yi,j, (i, j) ∈ Gkr ,kc }, U(kr ,kc ) = (U⊤

i,j, (i, j) ∈ Gkr ,kc )
⊤. The corresponding true B-spline coefficient vector

is denoted by α∗
= (α∗⊤

1,1, . . . ,α
∗⊤

kr ,kc , . . . ,α
∗⊤

Kr ,Kc )
⊤. Note that

∂ L̂or (αkr ,kc )
∂αkr ,kc

⏐⏐⏐⏐
αkr ,kc =α̂or

kr ,kc

−
∂ L̂or (αkr ,kc )
∂αkr ,kc

⏐⏐⏐⏐
αkr ,kc =α∗

kr ,kc

=
∂ L̂or (αkr ,kc )
∂αkr ,kc ∂α

⊤

kr ,kc

⏐⏐⏐⏐
αkr ,kc =ᾱkr ,kc

(α̂or
kr ,kc − α∗

kr ,kc ),

here ᾱkr ,kc is between α̂
or
kr ,kc and α∗

kr ,kc . Then we have

α̂
or
kr ,kc − α∗

kr ,kc = −

(
∂ L̂or (αkr ,kc )
∂αkr ,kc ∂α

⊤

kr ,kc

⏐⏐⏐⏐
αkr ,kc =ᾱkr ,kc

)−1
∂ L̂or (αkr ,kc )
∂αkr ,kc

⏐⏐⏐⏐
αkr ,kc =α∗

kr ,kc

.

ence

∥α̂
or
kr ,kc −α∗

kr ,kc∥2 ≤

|G(r,c)∗
kr ,kc |

(
∂ L̂or (αkr ,kc )
∂αkr ,kc ∂α

⊤

kr ,kc

⏐⏐⏐⏐
αkr ,kc =ᾱkr ,kc

)−1
2

|G(r,c)∗
kr ,kc |

−1 ∂ L̂or (αkr ,kc )
∂αkr ,kc

⏐⏐⏐⏐
αkr ,kc =α∗

kr ,kc


2

:= A(1)
kr ,kc ×A(2)

kr ,kc .

(A.3)

By Lemma A.8 of [41], Conditions (C1) and (C2), we can derive that there exists a constant C3 > 0 such that for any
≤ kr ≤ Kr , 1 ≤ kc ≤ Kc ,

P(A(1)
kr ,kc ≤ C3) = P

(U⊤

(kr ,kc )U(kr ,kc )

(r,c)∗ +
γ1|G

(r,c)
kr ,kc |D
(r,c)∗

 ≤ C3

)
≥ 1 − p/(Nq). (A.4)
|Gkr ,kc | |Gkr ,kc |
2

14
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w

h

T

B

H

w

Besides, note that

A(2)
kr ,kc =

−
U⊤

(kr ,kc )

|G(r,c)∗
kr ,kc |

(
Y(kr ,kc ) − g∗

(kr ,kc ) + g∗

(kr ,kc ) − U(kr ,kc )α
∗

kr ,kc

)
+ γ1

|G(r,c)
kr ,kc |

|G(r,c)∗
kr ,kc |

Dα∗

kr ,kc


2

≤

 U⊤

(kr ,kc )

|G(r,c)∗
kr ,kc |

ϵkr ,kc


2

+

 U⊤

(kr ,kc )

|G(r,c)∗
kr ,kc |

(g∗

(kr ,kc ) − U(kr ,kc )α
∗

kr ,kc )

2

+

γ1 |G(r,c)
kr ,kc |

|G(r,c)∗
kr ,kc |

Dα∗

kr ,kc


2

:= B(1)
kr ,kc + B(2)

kr ,kc + B(3)
kr ,kc .

(A.5)

Since the rescaled B-spline values are finite, there exists constant M1 > 0 such that Ul,p(t) ≤ M1 for l ∈ {1, . . . , p}. Let
U(i,j)·l denote the lth column of U(i,j), and we verify the condition of Lemma 3 by Condition (C5)

E|U⊤

(i,j)·lϵi,j|
m

≤ E
(
|U⊤

(i,j)·lU(i,j)·l|
m/2

· |ϵ⊤

i,jϵi,j|
m/2
)

≤ (F−1M1)mm!E
(
exp

{
F |n−1

i,j ϵ⊤

i,jϵi,j|
1/2})

≤ (F−1M1)mm!c2.

Applying Lemma 3, we have

P
(⏐⏐⏐⏐ ∑

(i,j)∈G(r,c)
kr ,kc

U⊤

(i,j)·lϵi,j

⏐⏐⏐⏐ > x
)

≤ 2 exp
{
−

1
2

x2

v + F−1M1x

}
, (A.6)

here v =
∑

(i,j)∈G(r,c)
kr ,kc

vi,j and vi,j = 2F−2M2
1 c2.

Let U(kr ,kc )·l denote the lth column of U(kr ,kc ). For some constant 0 < C < ∞, combining Condition (C5) and (A.6), we
ave

P
( ⏐⏐⏐⏐|G(r,c)∗

kr ,kc |
−1

U⊤

(kr ,kc )ϵkr ,kc
⏐⏐⏐⏐

∞
> CF−1M1

(
log(Nq)/|G(r,c)∗

kr ,kc |
)1/2 )

≤

p∑
l=1

P
(
|U⊤

(kr ,kc )·lϵkr ,kc | > CF−1M1
(
log(Nq)|G(r,c)∗

kr ,kc |
)1/2)

=

p∑
l=1

P
(⏐⏐⏐⏐ ∑

(i,j)∈G(r,c)
kr ,kc

U⊤

(i,j)·lϵi,j

⏐⏐⏐⏐ > CF−1M1
(
log(Nq)|G(r,c)∗

kr ,kc |
)1/2)

≤ 2p exp
{
−

1
2

C2F−2M2
1

(
log(Nq)|G(r,c)∗

kr ,kc |
)

2F−2M2
1 c2|G

(r,c)
kr ,kc | + CF−2M2

1

(
log(Nq)|G(r,c)∗

kr ,kc |
)1/2 } ≤ 2p exp

{
− log(Nq)

}
≤ 2p/Nq.

Hence, we have that with probability at least 1 − 2p/(Nq),

B(1)
kr ,kc ≤ CF−1M1

(
p log(Nq)/|G(r,c)

kr ,kc |
)1/2

. (A.7)

By Lemma 1, there exists a constant M2 > 0 such that

B(2)
kr ,kc ≤ p1/2

 U⊤

(kr ,kc )

|G(r,c)∗
kr ,kc |

(g∗

(kr ,kc ) −U(kr ,kc )α
∗

kr ,kc )


∞

≤ p1/2
 U⊤

(kr ,kc )

|G(r,c)∗
kr ,kc |


∞

(g∗

(kr ,kc ) −U(kr ,kc )α
∗

kr ,kc )


∞

≤ M1M2p1/2J−κ . (A.8)

In addition,

B(3)
kr ,kc ≤ γ1

|G(r,c)
kr ,kc |

|G(r,c)∗
kr ,kc |

∥α∗

kr ,kc∥2∥D∥2 ≤ p1/2γ1∥α∗

kr ,kc∥∞∥D∥2. (A.9)

hus by (A.5), (A.7), (A.8), and (A.9), for any 1 ≤ kr ≤ Kr , 1 ≤ kc ≤ Kc , with probability at least 1 − 2p/(Nq),

A(2)
kr ,kc ≤ CF−1M1

(
p log(Nq)/|G(r,c)

min |
)1/2

+ M1M2p1/2J−κ + max
kr ,kc

∥α∗

kr ,kc∥∞∥D∥2γ1p1/2.

y Condition (C1) and γ1 = o(|G(r,c)
min |

−1/2
), when N and q are sufficiently large, we have

p1/2J−κ ≪
(
p log(Nq)/|G(r,c)

min |
)1/2

, p1/2γ1 ≪
(
p log(Nq)/|G(r,c)

min |
)1/2

.

ence, for any 1 ≤ kr ≤ Kr , 1 ≤ kc ≤ Kc , with probability at least 1 − 2p/(Nq),

A(2)
kr ,kc ≤ C4

(
p log(Nq)/|G(r,c)

min |
)1/2

,

here C4 is a large constant. Together with (A.3) and (A.4), for any 1 ≤ kr ≤ Kr , 1 ≤ kc ≤ Kc ,

P
(
∥α̂

or
kr ,kc − α∗

kr ,kc∥2 ≤ C3C4
(
p log(Nq)/|G(r,c)

min |
)1/2)

≥ 1 − P(A(1)
kr ,kc > C3) − P

(
A(2)
kr ,kc > C4

(
p log(Nq)/|G(r,c)

min |
)1/2)
≥ 1 − 3p/(Nq).
15
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B

B

w

w

P

w

F

C

B

a
i

y the Bonferroni’s inequality, we have

P
(

sup
1≤kr≤Kr ,1≤kc≤Kc

∥α̂
or
kr ,kc − α∗

kr ,kc∥2 ≤ C3C4
(
p log(Nq)/|G(r,c)

min |
)1/2)

≥ 1 −

Kr∑
kr=1

Kc∑
kc=1

P
(
∥α̂

or
kr ,kc − α∗

kr ,kc∥2 > C3C4
(
p log(Nq)/|G(r,c)

min |
)1/2)

≥ 1 − 3KrKcp/(Nq).

y Lemma 1 and (A.2), we have

∥ĝor
(kr ,kc ) − g∗

(kr ,kc )∥ = ∥α̂
or⊤
kr ,kcUp − α∗⊤

kr ,kcUp + α∗⊤

kr ,kcUp − g∗

(kr ,kc )∥ ≤ ∥(α̂or
kr ,kc − α∗

kr ,kc )
⊤Up∥ + ∥α∗⊤

kr ,kcUp − g∗

(kr ,kc )∥

≤ C1/2
2 C3C4

(
p log(Nq)/|G(r,c)

min |
)1/2

+ M2J−κ ≤ (C1/2
2 C3C4 + M2/2)

(
p log(Nq)/|G(r,c)

min |
)1/2

= C∗
(
p log(Nq)/|G(r,c)

min |
)1/2

,

here C∗
= max{C3C4, C

1/2
2 C3C4 + M2/2}. That is,

P
(

sup
1≤kr≤Kr ,1≤kc≤Kc

∥ĝor
(kr ,kc ) − g∗

(kr ,kc )∥ ≤ ψ

)
≥ 1 − 3KrKcp/(Nq),

here ψ = C∗
(
p log(Nq)/|G(r,c)

min |
)1/2. □

roof of Theorem 2. Let ρ1(t) = γ−1
2 pτ (t, γ2) and ρ2(t) = ((N/q)1/2γ2)−1pτ (t, (N/q)1/2γ2). Define

Q (β) =
1
2

N∑
i=1

q∑
j=1

(
∥Yi,j − Ui,jβi,j∥

2
2 + γ1β

⊤

i,jDβi,j

)
,

Pen(β) = γ2
∑

(i1,i2)∈∆(r)

ρ1(∥β
(r)
i1

− β
(r)
i2

∥2) + (N/q)1/2γ2
∑

(j1,j2)∈∆(c)

ρ2(∥β
(c)
j1

− β
(c)
j2

∥2),

QG(α) =
1
2

Kr∑
kr=1

Kc∑
kc=1

(
∥Y(kr ,kc ) − U(kr ,kc )αkr ,kc∥

2
2 + γ1|G

(r,c)
kr ,kc |α

⊤

kr ,kcDαkr ,kc

)
,

PenG(α) = γ2
∑
kr<k′r

|G(r)
kr ∥G(r)

k′r
|ρ1(∥α

(r)
kr − α

(r)
k′r

∥2) + (N/q)1/2γ2
∑
kc<k′c

|G(c)
kc ∥G(c)

k′c
|ρ2(∥α

(c)
kc − α

(c)
k′c

∥2),

here α
(r)
kr = (α(r)⊤

kr ,1 , . . . ,α
(r)⊤
kr ,q )

⊤ with α
(r)
kr ,j = αkr ,k if j ∈ G(c)

k , α(c)
kc = (α(c)⊤

1,kc , . . . ,α
(c)⊤
N,kc )

⊤ with α
(c)
i,kc = αk,kc if i ∈ G(r)

k . Let

L(β) = Q (β) + Pen(β), LG(α) = QG(α) + PenG(α).

We define two mappings, T̃ : MG → M̃G and T̂ : RNqp
→ M̂G , and the two subspaces are defined by

M̃G =

{
α ∈ RKrKcp : αkr ,kc = βi,j, for any (i, j) ∈ G(r,c)

kr ,kc , 1 ≤ kr ≤ Kr , 1 ≤ kc ≤ Kc

}
,

M̂G =

{
α ∈ RKrKcp : αkr ,kc = |G(r,c)

kr ,kc |
−1 ∑

(i,j)∈G(r,c)
kr ,kc

βi,j, 1 ≤ kr ≤ Kr , 1 ≤ kc ≤ Kc

}
.

or every β ∈ MG , we have Pen(β) = PenG (̃T (β)), and for every α ∈ M̃G , we have Pen(̃T−1(α)) = PenG(α). Hence

L(β) = LG (̃T (β)), LG(α) = L(̃T−1(α)). (A.10)

onsider the neighborhood of β∗:

Θ =

{
β ∈ RNqp

: sup
1≤i≤N,1≤j≤q

∥βi,j − β∗

i,j∥2 ≤ ψ

}
.

y the result in Theorem 1, there is an event E1 such that on E1,

sup
1≤i≤N,1≤j≤q

∥β̂
or
i,j − β∗

i,j∥2 ≤ ψ,

nd P(EC
1 ) ≤ 3KrKcp/(Nq). Hence β̂

or
∈ Θ on E1. For any β ∈ RNqp, let β̃ = T̃−1 (̂T (β)). Inspired by [27], we show that β̂

or

s a strictly local minimizer of objective function (3) with probability tending to 1 through the following two steps:

(i) On E , L(β̃) > L(β̂
or
) for any β ∈ Θ and β̃ ̸= β̂

or
.
1
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(ii) There is an event E2 such that P(EC
2 ) ≤ c2/(Nq). On E1 ∩E2, there is a neighborhood of β̂

or
, denoted by Θ ′, such that

L(β) ≥ L(β̃) for any β ∈ Θ ′
∩Θ for sufficiently large N and q.

herefore, by the results in (i) and (ii), we have L(β) > L(β̂
or
) for any β ∈ Θ ′

∩ Θ and β̃ ̸= β̂
or
, so that β̂

or
is a strictly

ocal minimizer of L(β) on E1 ∩ E2 with P(E1 ∩ E2) ≥ 1 − 3KrKpp/(Nq) − c2/(Nq) for sufficiently large N and q.
Firstly, we prove the result in (i) . Let T̂ (β) = α = (α⊤

1,1, . . . ,α
⊤

Kr ,Kc )
⊤ and α

(r)∗
kr = (β(r)∗⊤

i,1 , . . . ,β
(r)∗⊤

i,q )⊤ for i ∈ G(r)
kr . Since

∥α
(r)
kr − α

(r)
k′r

∥2 ≥ ∥α
(r)∗
kr − α

(r)∗
k′r

∥2 − 2 sup
1≤kr≤Kr

∥α
(r)
kr − α

(r)∗
kr ∥2,

and

sup
1≤kr≤Kr

∥ α
(r)
kr − α

(r)∗
kr ∥

2
2 = sup

1≤kr≤Kr

{ Kc∑
kc=1

|G(c)
kc | ·

 ∑
i∈G(r)

kr

∑
j∈G(c)

kc

βi,j/(|G
(r)
kr ∥ G(c)

kc |) − α∗

kr ,kc

2

2

}

≤ sup
1≤kr≤Kr

|G(r)
kr |

−1
Kc∑

kc=1

∑
i∈G(r)

kr

∑
j∈G(c)

kc

∥ βi,j − β∗

i,j ∥
2
2≤ q sup

1≤i≤N,1≤j≤q
∥βi,j − β∗

i,j∥
2
2

(A.11)

by Lemma 2, for any kr ̸= k′
r

∥α
(r)
kr − α

(r)
k′r

∥2 ≥
1
2
|G(c)

min|
1/2

C−1/2
2 b − 2q1/2 sup

1≤i≤N,1≤j≤q
∥βi,j − β∗

i,j∥2

≥
1
2
|G(c)

min|
1/2

C−1/2
2 b − 2q1/2C3ψ > aγ2.

he last inequality follows from the assumption that |G(c)
min|

1/2
b ≫ γ2 ≫

(
pq
)1/2 log(Nq)/min{|G(r)

min|, |G
(c)
min|} ≫ q1/2ψ .

imilarly, for any kc ̸= k′
c , we have

∥α
(c)
kc − α

(c)
k′c

∥2 ≥
1
2
|G(r)

min|
1/2

C−1/2
2 b − 2N1/2 sup

1≤i≤N,1≤j≤q
∥βi,j − β∗

i,j∥2

≥
1
2
|G(r)

min|
1/2

C−1/2
2 b − 2N1/2C3ψ > a(N/q)1/2γ2.

ence by Condition (C4), PenG (̂T (β)) = Cpen, a constant, and hence LG (̂T (β)) = QG (̂T (β)) + Cpen for all β ∈ Θ . Since α̂
or

s the unique global minimizer of QG(α), QG (̂T (β)) > QG(α̂or ) for all T̂ (β) ̸= α̂
or , and thus LG (̂T (β)) > LG(α̂or ) for all

(β) ̸= α̂
or . By (A.10), we have LG (̂T (β)) = L(β̃) and LG(α̂or ) = L(β̂

or
). Therefore L(β̃) > L(β̂

or
) for all β̃ ̸= β̂

or
, and the

esult (i) is proved.
Next we prove result (ii). For a positive sequence νn, let

Θ ′
=

{
β ∈ RNqp

: sup
1≤i≤N

∥β
(r)
i − β̂

(r)or
i ∥2 ≤ νn, sup

1≤j≤q
∥β

(c)
j − β̂

(c)or
j ∥2 ≤ νn

}
,

Penr (β) = γ2
∑

(i1,i2)∈∆(r)

ρ1(∥β
(r)
i1

− β
(r)
i2

∥2), Penc(β) = (N/q)1/2γ2
∑

(j1,j2)∈∆(c)

ρ2(∥β
(c)
j1

− β
(c)
j2

∥2),

nd Pen(β) = Penr (β) + Penc(β). For β ∈ Θ ′
∩Θ , by Taylor’s expansion, we have

L(β) − L(β̃) = Ω1 +Ω2 +Ω3, (A.12)

here

Ω1 =

N∑
i=1

q∑
j=1

[
−U⊤

i,j(Yi,j − Ui,jβ̄i,j) + γ1Dβ̄i,j

]⊤

(βi,j − β̃i,j),

Ω2 =

N∑
i=1

(
∂Penr (β̄)

∂β
(r)
i

⏐⏐⏐⏐
β
(r)
i =β̄

(r)
i

)⊤

(β(r)
i − β̃

(r)
i ), Ω3 =

q∑
j=1

(
∂Penc(β̄)

∂β
(c)
j

⏐⏐⏐⏐
β
(c)
j =β̄

(c)
j

)⊤

(β(c)
j − β̃

(c)
j ),

ith β̄ = (β̄
⊤

, . . . , β̄
⊤

)⊤ and β̄ = sβ + (1 − s)β̃ for some s ∈ (0, 1).
1,1 N,q i,j i,j i,j
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Firstly, we have

Ω2 = γ2
∑
i1<i2

ρ ′

1(∥β̄
(r)
i1 − β̄

(r)
i2 ∥2)∥β̄

(r)
i1 − β̄

(r)
i2 ∥

−1
2 (β̄

(r)
i1 − β̄

(r)
i2 )⊤(β(r)

i1
− β̃

(r)
i1 )

+ γ2
∑
i1>i2

ρ ′

1(∥β̄
(r)
i1 − β̄

(r)
i2 ∥2)∥β̄

(r)
i1 − β̄

(r)
i2 ∥

−1
2 (β̄

(r)
i1 − β̄

(r)
i2 )⊤(β(r)

i1
− β̃

(r)
i1 )

= γ2
∑
i1<i2

ρ ′

1(∥β̄
(r)
i1 − β̄

(r)
i2 ∥2)∥β̄

(r)
i1 − β̄

(r)
i2 ∥

−1
2 (β̄

(r)
i1 − β̄

(r)
i2 )⊤[(β(r)

i1
− β̃

(r)
i1 ) − (β(r)

i2
− β̃

(r)
i2 )].

When i1, i2 ∈ G(r)
kr , β̃i1 = β̃i2 . Thus

Ω2 = γ2

Kr∑
kr=1

∑
i1,i2∈G(r)

kr
,i1<i2

ρ ′

1(∥β̄
(r)
i1 − β̄

(r)
i2 ∥2)∥β̄

(r)
i1 − β̄

(r)
i2 ∥

−1
2 (β̄

(r)
i1 − β̄

(r)
i2 )⊤(β(r)

i1
− β

(r)
i2
)

+ γ2
∑
kr<k′r

∑
i1∈G(r)

kr
,i2∈G(r)

k′r

ρ ′

1(∥β̄
(r)
i1 − β̄

(r)
i2 ∥2)∥β̄

(r)
i1 − β̄

(r)
i2 ∥

−1
2 (β̄

(r)
i1 − β̄

(r)
i2 )⊤[(β(r)

i1
− β̃

(r)
i1 ) − (β(r)

i2
− β̃

(r)
i2 )].

As shown in Theorem 1, supi ∥β̃
(r)
i −β

(r)∗
i ∥

2
2 = supkr ∥α

(r)
kr −α

(r)∗
kr ∥

2
2 ≤ qψ2. Since β̄

(r)
i = sβ(r)

i +(1−s)β̃
(r)
i , supi ∥β̄

(r)
i −β

(r)∗
i ∥2 ≤

sq1/2ψ + (1 − s)q1/2ψ = q1/2ψ . For kr ̸= k′
r , i1 ∈ G(r)

kr , i2 ∈ G(r)
k′r
, we have

∥β̄
(r)
i1 − β̄

(r)
i2 ∥2 ≥ min

i1∈G(r)
kr
,i2∈G(r)

k′r

∥β
(r)∗
i1

− β
(r)∗
i2

∥2 − 2max
i

∥β̄
(r)
i − β

(r)∗
i ∥2 ≥

1
2
|G(c)

min|
1/2

C−1/2
2 b − 2q1/2ψ > aγ2,

nd thus ρ ′

1(∥β̄
(r)
i1 − β̄

(r)
i2 ∥2) = 0. Therefore,

Ω2 = γ2

Kr∑
kr=1

∑
i1,i2∈G(r)

kr
,i1<i2

ρ ′

1(∥β̄
(r)
i1 − β̄

(r)
i2 ∥2)∥β

(r)
i1

− β
(r)
i2

∥2

≥ γ2

Kr∑
kr=1

∑
i1,i2∈G(r)

kr
,i1<i2

ρ ′

1(∥β̄
(r)
i1 − β̄

(r)
i2 ∥2)q−1/2

q∑
j=1

∥βi1,j − βi2,j∥2

= γ2q−1/2
Kr∑

kr=1

Kc∑
kc=1

∑
i1,i2∈G(r)

kr
,i1<i2

∑
j∈G(c)

kc

ρ ′

1(∥β̄
(r)
i1 − β̄

(r)
i2 ∥2)∥βi1,j − βi2,j∥2.

imilarly to (A.11), supi ∥β̃
(r)
i − β̂

(r)or
i ∥2 ≤ νn and supi ∥β

(r)
i − β̂

(r)or
i ∥2 ≤ νn. Then we have

sup
i1<i2

∥β̄
(r)
i1 − β̄

(r)
i2 ∥2 ≤ 2 sup

i
∥β̄

(r)
i − β̃

(r)
i ∥2 ≤ 2 sup

i
∥β

(r)
i − β̃

(r)
i ∥2 ≤ 2

(
sup

i
∥β

(r)
i − β̂

(r)or
i ∥2 + sup

i
∥β̃

(r)
i − β̂

(r)or
i ∥2

)
≤ 4νn.

ence ρ ′

1(∥β̄
(r)
i1 − β̄

(r)
i2 ∥2) ≥ ρ ′

1(4νn) by the concavity of ρ(·). As a result,

Ω2 ≥ γ2q−1/2
Kr∑

kr=1

Kc∑
kc=1

∑
i1,i2∈G(r)

kr
,i1<i2

∑
j∈G(c)

kc

ρ ′

1(4νn)∥βi1,j − βi2,j∥2. (A.13)

Next we consider Ω3. Similarly to the derivation of (A.13), we can derive

Ω3 ≥ γ2q−1/2
Kr∑

kr=1

Kc∑
kc=1

∑
j1,j2∈G(c)

kc
,j1<j2

∑
i∈G(r)

kr

ρ ′

2(4νn)∥βi,j1 − βi,j2∥2. (A.14)

Lastly for Ω1, we have

Ω1 = −

N∑
i=1

q∑
j=1

w⊤

i,j(βi,j − β̃i,j) = −

Kr∑
kr=1

Kc∑
kc=1

∑
(r)

∑
(c)

w⊤

i1,j1
(βi1,j1 − βi2,j2 )

|G(r,c)
kr ,kc |

,

i1,i2∈Gkr
j1,j2∈Gkc
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a

w

B
γ
w

T

h(
nd
Kr∑

kr=1

Kc∑
kc=1

∑
i1,i2∈G(r)

kr

∑
j1,j2∈G(c)

kc

|w⊤

i1,j1
(βi1,j1 − βi2,j2 )|

|G(r,c)
kr ,kc |

≤ sup
i,j

∥wi,j∥2

Kr∑
kr=1

Kc∑
kc=1

∑
i1,i2∈G(r)

kr

∑
j1,j2∈G(c)

kc

∥βi1,j1 − βi2,j2∥2

|G(r,c)
kr ,kc |

≤ 2 sup
i,j

∥wi,j∥2

Kr∑
kr=1

Kc∑
kc=1

∑
i1,i2∈G(r)

kr
,i1<i2

∑
j∈G(c)

kc

∥βi1,j − βi2,j∥2

|G(r)
kr |

+ 2 sup
i,j

∥wi,j∥2

Kr∑
kr=1

Kc∑
kc=1

∑
j1,j2∈G(c)

kc
,j1<j2

∑
i∈G(r)

kr

∥βi,j1 − βi,j2∥2

|G(c)
kc |

,

here wi,j = U⊤

i,j(Yi,j − Ui,jβ̄i,j) − γ1Dβ̄i,j. Note that

sup
i,j

∥wi,j∥2 ≤ sup
i,j

∥U⊤

i,j(g
∗

i,j − Ui,jβ
∗

i,j)∥2 + sup
i,j

∥(U⊤

i,jUi,j + γ1D)(β∗

i,j − β̄i,j)∥2 + sup
i,j

∥γ1Dβ∗

i,j∥2 + sup
i,j

∥U⊤

i,jϵi,j∥2.

y Lemma 1, supi,j ∥U⊤

i,j(g
∗

i,j − Ui,jβ
∗

i,j)∥2 ≤ nmM1M2p1/2J−κ . Moreover, supi,j ∥(U⊤

i,jUi,j + γ1D)(β∗

i,j − β̄i,j)∥2 ≤ (n1/2
m p1/2M1 +

1∥D∥2)ψ , supi,j ∥γ1Dβ∗

i,j∥2 ≤ p1/2γ1∥D∥2∥β
∗
∥∞. With the Bonferroni’s inequality, Markov’s inequality, and Condition (C5),

e have

P
(
sup
i,j

∥U⊤

(i,j)ϵi,j∥2 > 2ni,jF−1M1p1/2 log(Nq)
)

≤

N∑
i=1

q∑
j=1

P
(
∥U⊤

(i,j)ϵi,j∥2 > 2ni,jF−1M1p1/2 log(Nq)
)

≤

N∑
i=1

q∑
j=1

P
(
Fn−1/2

i,j ∥ϵi,j∥2 > 2 log(Nq)
)

≤ c2/(Nq).

ogether with Conditions (C1) and (C3), we have

sup
i,j

∥wi,j∥2 = O(p1/2 log(Nq)) (A.15)

olds with probability at least 1 − c2/(Nq). Let νn = o(1), then ρ ′

1(4νn) → 1 and ρ ′

2(4νn) → 1. Since γ2 ≫

pq
)1/2 log(Nq)/min{|G(r)

min|, |G
(c)
min|}, then by (A.12)–(A.15)

L(β) − L(β̃) = Ω1 +Ω2 +Ω3 ≥

Kr∑
kr=1

Kc∑
kc=1

∑
i1,i2∈G(r)

kr
,i1<i2

∑
j∈G(c)

kc

[
γ2q−1/2ρ ′

1(4νn) −
2 supi,j ∥wi,j∥2

|G(r)
kr |

]
∥βi1,j − βi2,j∥2

+

Kr∑
kr=1

Kc∑
kc=1

∑
j1,j2∈G(c)

kc
,j1<j2

∑
i∈G(r)

kr

[
γ2q−1/2ρ ′

2(4νn) −
2 supi,j ∥wi,j∥2

|G(c)
kc |

]
∥βi,j1 − βi,j2∥2 ≥ 0

holds with probability at least 1 − c2/(Nq), which completes the proof of result (ii). □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2021.104874. The
Supplementary section contains additional tables and figures for Examples 2–5.
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