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a b s t r a c t

We propose here both F-test and z-test (or t-test) for testing global significance and
individual effect of each single predictor respectively in high dimension regression model
when the explanatory variables follow a latent factor structure (Wang, 2012). Under the
null hypothesis, together with fairly mild conditions on the explanatory variables and
latent factors, we show that the proposed F-test and t-test are asymptotically distributed
as weighted chi-square and standard normal distribution respectively. That leads to quite
different test statistics and inference procedures, as comparedwith that of Zhong and Chen
(2011) when the explanatory variables are weakly dependent. Moreover, based on the
p-value of each predictor, the method of Storey et al. (2004) can be used to implement
the multiple testing procedure, and we can achieve consistent model selection as long as
we can select the threshold value appropriately. All the results are further supported by
extensive Monte Carlo simulation studies. The practical utility of the two proposed tests
are illustrated via a real data example for index funds tracking in China stock market.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Traditional F-test and z-test (or t-test) are commonly used to detect the relationship between a response variable Yi ∈ R1

and a set of explanatory variables Xi ∈ Rp in a linear regression model when the number of explanatory variables p is fixed.
By contrast, when p is diverging and much larger than the sample size n, classical statistical inferences (F test and z-test)
were not applicable since the resulting ordinary least square (OLS) estimator is no longer computable. To fix the issue, there
is a large stream of papers intending to extend the traditional F-test and z-test (or t-test) to accommodate high dimensional
settings; see, for example, [22,9,21,12].

The aforementioned testing procedures are quite useful for high dimensional data analyses. However, their applicability
is heavily relying on one critical assumption, i.e., the explanatory variables are weakly dependent such that tr(Σ4) =

o{tr2(Σ2)}, where Σ = cov(Xi) ∈ Rp×p. For more detailed illustrations for such assumption, we refer to [22,23]. It is
remarkable that such assumption is violated if the explanatory variables Xi admit a latent factor structure, which is usually
encountered in real practice [6,19]. Specifically, we consider the following data generation process Xi = γ Zi + Xi, where
each element of the common factors Zi ∈ Rd and random errors Xi are all independently generated from a standard
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normal distribution, with d > 0 is the finite number of common factors. Moreover, the factor loadings γ ∈ Rp×d satisfy
p−1γ ⊤γ → Id, where Id represents the identity matrix of dimension d. In this setting, one can verify that tr(Σ4) =

tr(γ γ ⊤)4{1+ o(1)} = tr(γ ⊤γ )4{1+ o(1)} = p4tr(Id){1+ o(1)} = dp4{1+ o(1)}, and tr(Σ2) = dp2{1+ o(1)}. As a result,
we can have tr(Σ4)/tr2(Σ2) → 1/d ≠ 0, which violates condition (2.8) of [22], and condition (C1) of [12]. Consequently,
how to construct testing procedures for this special types of explanatory variables is a problem of theoretical demand.

It is also noteworthy that the above testing problems are also empirically motivated. For example, consider the problem
of index fund tracking of reproducing the performance of a stock market index. In this particular application, the response
of interest is the return on some specific market index, say Shanghai composite index in China stock market, while the
explanatory variables can be the return of all the stocks in China stock market. Therefore, the number of explanatory
variables may be very large compared with the number of observations; see Section 3.2 of real data analysis for details.
For these types of explanatory variables, we cannot expect that the returns across different stocks are weakly dependent.
In fact, it has long been recognized empirically and theoretically that there should exist some latent common factors that
influence all stock returns [16,4,7,5]. To this end, it is quite natural and reasonable to assume that the explanatory variables
Xi follow a latent factor structure so that the condition tr(Σ4) = o{tr2(Σ2)} is violated.

Motivated by the theoretical and practical demand, we intend to construct some testing procedures for the regression
coefficients when the explanatory variables admit a latent factor structure [19]. We develop both F-test and z-test (or t-
test) for testing global significance and effect of each single predictor respectively in high dimension regression model.
Specifically, we revisit the test statistic of [12] used for testing global significance of regression coefficients for weakly
dependent explanatory variables, and show that the resulting test statistic is asymptotic weighted chi-square when the
explanatory variables follow an approximate factor model under some mild conditions. That leads to quite different
test statistics and inference procedures, as compared with that of [22,12], when the explanatory variables are weakly
dependent. In addition, after controlling for the latent common effect of the explanatory variables, the remaining factor
profiled predictors are weakly dependent [19]. As a consequence, the univariate regression [7] can be used to assess the
significance of each variable. Based on the p-value of each predictor, we can then apply the method of [17] to control
the false discovery rate (FDR), and the method can achieve consistent model selection as long as we can set the nominal
level appropriately. Extensive simulation results and an empirical example on index fund tracking in China stock market
confirmed the usefulness of the proposed method.

The remainder of the paper is organized as follows. Section 2 introduces global significance testing, and individual effect
testing with FDR control together with their theoretical properties. Numerical studies, including simulation and a real data
analysis, are reported in Section 3. Section 4 concludes the article with a short discussion and all the technical details are
provided in the Appendix.

2. The methodology

2.1. Model and notations

Let (Yi, Xi) be the observation collected at ith unit for 1 ≤ i ≤ n, where Yi ∈ R1 is the response value, Xi =

(Xi1, . . . , Xip)
⊤

∈ Rp be the p-dimensional explanatory variables with mean 0 and covariance matrix Σ = (σj1j2) ∈ Rp×p.
Unless explicitly stated otherwise, we hereafter assume that p ≫ n and n tends to infinity for asymptotic behavior. In
addition, we assume that all the explanatory variables have been appropriately standardized such that E(Xij) = 0, and
σjj = 1 for every 1 ≤ j ≤ p. To establish the relationship between Yi and Xi, we consider the following linear regression
model,

Yi = X⊤

i β + εi, (2.1)

where β = (β1, . . . , βp)
⊤

∈ Rp is an unknown vector of regression coefficients, εi is the random noise that is independent
of Xi, distributed with mean 0 and finite variance σ 2 < ∞. For notation convenience, define Y = (Y1, . . . , Yn)

⊤
∈ Rn be a

vector of response variable, X = (X1, . . . , Xn)
⊤

∈ Rn×p be the design matrix with the jth column Xj = (X1j, . . . , Xnj)
⊤

∈ Rn,
and ε = (ε1, . . . , εn)

⊤
∈ Rn.

Since the traditional F-test and z-test (or t-test) are no longer applicable when p is diverging and much larger than the
sample sizen, there is a large streamof papers intending to extend the traditional F-test and z-test (or t-test) to accommodate
high dimensional settings; see, for example, [22,9,21,12]. For the statistical validity of the aforementioned tests, appropriate
technical conditions have to be assumed. Among all the conditions, Zhang and Zhang [21] and Lan et al. [12] require that

λmax(Σ) < ∞, (2.2)

where λmax(A) represents for the largest eigenvalues of any arbitrary matrix A. In contrast, Zhong and Chen [22] replaced
condition (2.2) by

tr(Σ4) = o

tr2(Σ2)


. (2.3)

We find that both (2.2) and (2.3) are sensible if Σ is not highly singular, this should happen if the predictors are weakly
correlated. Unfortunately, conditions (2.2) and (2.3) are violated if the explanatory variables Xi are highly correlated that
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admit a latent factor structure. For illustration, we consider the following data generation process Xi = γ Zi + Xi, where
each element of the common factors Zi ∈ Rd and random errors Xi are all independently generated from a standard
normal distribution, with d > 0 is the finite number of common factors. Moreover, the factor loadings γ ∈ Rp×d satisfy
p−1γ ⊤γ → Id, where Id represents the identity matrix of dimension d. In this setting, we have tr(Σ4) = tr(γ γ ⊤)4{1 +

o(1)} = tr(γ ⊤γ )4{1 + o(1)} = p4tr(Id){1 + o(1)} = dp4{1 + o(1)}, and tr(Σ2) = dp2{1 + o(1)}. As a result, we can have
tr(Σ4)/tr2(Σ2) → 1/d ≠ 0, which violates conditions (2.2) and (2.3). Consequently, how to construct testing procedure
of β for highly correlated predictors is a problem of demanding and interest.

2.2. A factor model

To model the dependence structure of Xi, we assume that Xi admits the following latent factor structure [5,19],

Xi = γ Zi +Xi, (2.4)

where Zi = (Zi1, . . . , Zid)⊤ is the d-dimensional latent factors, γ = (γjk) ∈ Rp×d is the associated factor loadings. Xi =

(Xi1, . . . ,Xip)
⊤

∈ Rp is the factor profiled predictor that is independent of Zi, it represents for the information that con-
tained in Xi but cannot be fully explained by the low dimensional (d < ∞) latent factors Zi. For identifiability purpose,
we assume that cov(Zi) = Id throughout the entire article. Moreover, we assume that Σ = (σj1j2) = cov(Xi) is a diagonal
matrix, that is, cov(Xij1 ,

Xij2) = 0 for any j1 ≠ j2. Moreover, we further assume that the diagonal elements of Σ are bounded
from zero to infinity such that

σmin < min
j

σjj ≤ max
j

σjj < σmax (2.5)

for some finite positive constants 0 < σmin ≤ σmax < ∞. Further define notation X = (X1, . . . ,Xn)
⊤

∈ Rn×p,Xj =

(X1j, . . . ,Xnj)
⊤

∈ Rn, and Z = (Z1, . . . , Zn)⊤ ∈ Rn×d. Consequently, under the factor model setting (2.4), model (2.1)
is reduced to the following matrix form Y = Zγ ⊤β + Xβ + ε. To extract the common effects Z , we multiply Q(Z) =

In −Z(Z⊤Z)−1Z⊤ by each part of the equation, which leads to Q(Z)Y = Q(Z)Xβ +Q(Z)ε. Denote Ȳ = Q(Z)Y, X̄ = Q(Z)X,
and ε̄ = Q(Z)ε, we then obtain the following factor profiled regression model [19],

Ȳ = X̄β + ε̄, (2.6)

where X̄ = (X̄1, . . . , X̄n)
⊤

∈ Rn×p. The main focus of current article is intending to construct some testing procedures for
the regression coefficients β . We consider the following two aspects. First, we test the statistical significance of β globally,
i.e., the so-called F-test, similar testing procedures were investigated for general weakly correlated predictors; see, for ex-
ample, [22,12]. Second, we consider testing the statistical significance of each single predictor separately together with a
FDR controlling procedure, this procedure can help us to identify the relevant predictors if we reject the null hypothesis of
global significance in the first step.

2.3. Technical conditions

Before presenting the detailed testing procedures, we need to investigate a number of technical conditions. These
conditions are assumed to simplify the theoretical proofs, they are all quite mild and sensible in real practice.

(C1) Assume the profiled predictorsXi and latent factors Zi are all independent and normally distributed.
(C2) Assume the common factor number d is fixed, while the sample size n goes to infinity. Moreover, there exist some

finite positive constants cmin, cmax and ξ > 0 such that n−ξ log p < cmax and p/n ≥ cmin.
(C3) There exists some positive definitematrixΣγ ∈ Rd×d such that p−1γ ⊤γ → Σγ . The eigenvalues ofΣγ are all bounded

from zero to infinity.

Condition (C1) is popularly used in high dimensional regression setting to simplify the theoretical proofs; see, for example,
[7,18,19]. Condition (C2) indicates that as the sample sizen is diverging, the predictor dimension p can growat an exponential
order of n. As a result, p may be much larger than n. Condition (C3) is also reasonable and commonly assumed in the
literature; see, for example, [1,19], it can be satisfied if γjks are independently generated from some non-degenerate
distribution with finite fourth moment.

2.4. Global significance testing

We firstly consider the problemof testing statistical significance ofβ globally in this subsection. Accordingly, we consider
the following statistical hypotheses,

H0 : β = 0, vs. H1 : β ≠ 0. (2.7)
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Under the null hypothesis, model (2.1) is reduced to Yi = εi, then we can have E(Y⊤Xj) = E(ε⊤Xj) = 0 for every 1 ≤ j ≤ p.
As a result, we can expect that its sample counterpart n−1Y⊤Xj should be close to 0 as well, such that n−1Y⊤Xj ≈ 0 for
every j. Combining the information from every j leads us to consider the following test statistic

Tinitial = n−1p−1


j

∥Y⊤Xj∥
2/σ̂ 2

= n−1p−1Y⊤XX⊤Y/σ̂ 2, (2.8)

where σ̂ 2
= Y⊤Y/n is the normalizing constant. The asymptotic distribution of Tinitial is given below, whose proof is

relegated to Appendix B.

Theorem 1. Under the null hypothesis of (2.7), further assume that conditions (C1)–(C3) are satisfied and the number of latent
factors d is known, then as min{n, p} → ∞, Tinitial − σ̄ 2 follows a weighted chi-square distribution of

d
i=1 λiχ

2
1 , where

σ̄ 2
= p−1tr(Σ), and λi is the ith largest eigenvalues of Σγ .

To make the proposed test practically useful, one needs to estimate unknown parameters λi, σ̄
2 and d. The true number of

factors d is unknown albeit fixed. We start with an arbitrary number k for k < min(n, p). For each k, we estimate Z and γ

using themethod of principal component [19]. Specifically, we define ζ̂j be the jth largest eigenvalues of (np)−1XX⊤, while ϱ̂j

be the corresponding eigenvector. We next set Ẑk = n1/2(ϱ̂1, . . . , ϱ̂k) and then γ ⊤

k can be estimated by γ̂ ⊤

k = (Ẑ⊤

k Ẑk)−1Ẑ⊤

k X.
Subsequently, the number of common factors d can be selected by minimizing the following objective function

PC(k) = n−1p−1tr

(X − Zkγ ⊤

k )⊤(X − Zkγ ⊤

k )


+ kσ 2
pc

n + p
np


log

 np
n + p


with respect to k as suggested by Bai and Ng [2], which immediately leads to d̂ = argmin0≤k≤kmaxPC(k) with σ 2

pc =

n−1p−1tr(X⊤X) and kmax be a bounded integer such that d < kmax. According to the theoretical results of [2], d̂ equals
d with probability approaching to 1 under the conditions (C1)–(C3) and assumption (2.5). As a result, in the subsequent
article, we assume that the true latent factor number d is known to simplify the theoretical proofs. Finally, the estimated
common factor can be then defined as Ẑ = n1/2(ϱ̂1, . . . , ϱ̂d̂) and γ ⊤ can be estimated by γ̂ ⊤

= (Ẑ⊤Ẑ)−1Ẑ⊤X, Σ can be
estimated by n−1X⊤Q(Ẑ)X, and Σγ can be estimated by Σ̂γ = p−1γ̂ ⊤γ̂ . We next demonstrate the following results.

Proposition 1. Under the conditions (C1)–(C3), we can have (1.) n−1p−1tr

X⊤Q(Ẑ)X


−p−1tr(Σ) →p 0 and (2.) p−1γ̂ ⊤γ̂ −

Σγ →p 0.

Accordingly, we propose the following test statistic

Tfinal = n−1p−1Y⊤XX⊤Y/σ̂ 2
− n−1p−1tr


X⊤Q(Ẑ)X


.

Tfinal should follow a weighted chi-square distribution as
d̂

i=1 λ̂iχ
2
1 , where λ̂i is the ith largest eigenvalues of Σ̂γ . Let q̂α

stand for the α-th quantile of the weighted chi-square distribution. We then reject the null hypothesis of (2.7) if Tfinal > q̂α .
Based on the above results, one can calibrate the sizes of the proposed test.

Remark 1. It is worthmentioning that the above testing procedures can be extended to high dimensional partial F-test [12].
Specifically, if our interest is to test the global effect of Xib after controlling for the effect of Xia, with Xi = (X⊤

ia , X⊤

ib )⊤. Here,
the dimension of Xib is ultra high, while the dimension of Xia is fixed or much smaller than n. Then the testing procedure
can still be applicable by replacing Yi with the residual after regressing Yi on Xia in (2.8). One can verify that the asymptotic
distribution cannot be changed, we thus omit it to save space.

Remark 2. The proposed initial test statistic Tinitial and its asymptotic distribution given in Theorem 1 are identical to the
test statistic proposed by Goeman et al. [9]. The difference is that the asymptotic distribution of the test statistic proposed
by Goeman et al. [9] rely on the normal error assumption and weakly correlated predictors. Therefore, the asymptotic
results obtained in this article primarily extend the result of [9] to non-normal errors while allow the predictors to be highly
correlated that admit a latent factor structure.

2.5. Individual effect testing with FDR control

If we reject the null hypothesis of global significance, there should exist some predictors that have nontrivial effect on
the response. To this end, it is necessary to assess the effect of each single variable individually, that is, the so-called z-test
(or t-test). Specifically, our interest is to test the null hypothesis H0j : βj = 0 for some 1 ≤ j ≤ p. Without loss of generality,
we only consider testing the significance of the first predictor, that is,

H01 : β1 = 0 vs. H11 : β1 ≠ 0. (2.9)



W. Lan et al. / Journal of Multivariate Analysis 144 (2016) 25–37 29

To test β1 = 0, the univariate regression of [7] is no longer applicable, since the predictors are highly correlated according
to Eq. (2.4). Fortunately, the dependence between predictors is mainly driven by the common factors Z . Therefore, the
dependence between predictors can be removed by projecting off the effects of common factors by applying the operator
Q(Z). By doing so, the projected regressors become just the idiosyncratic components in the factor model (2.4), which are
uncorrelated by model assumption. This finding motivates us to apply univariate regression based on projected response
and regressors to assess the significance effect of each single variable in (2.1). Since the latent factor Z is usually unknown
in practice, we use the estimator Ẑ proposed in Section 2.4 for instead. To this end, we define Ŷ = Q(Ẑ)Y, X̂ = Q(Ẑ)X and
ε̂ = Q(Ẑ)ε. We next conduct univariate regression for the first predictor by regressing Ŷ on X̂1, the regression coefficient
estimate is given by β̂1 = (X̂⊤

1 X̂1)
−1X̂⊤

1 Ŷ, whose asymptotic distribution is given below.

Theorem 2. Under the conditions (C1)–(C3) and the bounded variance condition (2.5), further assume that


j |βj| < Cmax

for some finite positive constant Cmax > 0. Then, we can have n1/2(β̂1 − β1) →d N(0, σ 2
β1

), where σ 2
β1

= τ 2
β1

/σ11 with
τ 2
β1

=

σ 2

+ β⊤

1∗

Σ1∗ − Σ1∗1Σ−1
11

Σ11∗


β1∗


and β1∗ = (βj : j ≠ 1)⊤ ∈ Rp−1, Σ1∗ = (σj1j2 : j1 ≠ 1, j2 ≠ 1) ∈ R(p−1)×(p−1).

The condition


j |βj| < Cmax is sensible in practice and can be satisfied if the number of nonzero coefficients is finite.
According to Theorem 2, we can construct the following test statistic

Ẑ1 = n1/2β̂1/σ̂β1 , (2.10)

where σ̂ 2
β1

= τ̂ 2
β1


n−1X̂⊤

1 X̂1
−1

, and τ̂ 2
β1

= n−1ε̂∗⊤ε̂∗ with ε̂∗ is the residual obtained by regressing Ŷ on X̂1. One can verify
that Ẑ1 is asymptotic standard normal by employing the Slutsky’s theorem. Accordingly, one reject the null hypothesis of
(2.9) if |Ẑ1| > z1−α/2, where zα stands for the α-th quantile of a standard normal distribution.

When p is ultra-high, the predictors that need to be tested should be large as well. It is well known that by conducting
a large number of testing problems simultaneously, the type I error can get inevitable inflated and thus lead to nontrivial
multiple testing effect [3]. To guard against false discoveries,we employ themethod of [17] for controlling the false discovery
rate. We define N0 = {j : βj = 0}, N1 = {j : βj ≠ 0}, and N0 and N1 are the cardinality of sets N0 and N1, respectively.
Denote the p-value obtained by testing each individual null hypothesis, H0j, as pj = 2


1 − Φ(|Ẑj|)


, where Ẑj is the test

statistic and can be constructed similarly to that in Eq. (2.10). Moreover, let V (t) = #{j ∈ N0 : pj ≤ t} be the number
of falsely rejected hypotheses and R(t) = #{j : pj ≤ t} be the number of totally rejected hypotheses. As a result, for any
threshold value t ∈ [0, 1], the false discovery proportion is defined as FDP(t) = V (t)/[R(t) ∨ 1] and FDR(t) = E


FDP(t)


with R(t)∨ 1 = max{V (t), 1}. For any pre-chosen level q and a tuning parameter λ ∈ (0, 1], a data-driven threshold for the
p-values is determined by

tq
FDRλ


= sup


0 ≤ t ≤ 1 : FDRλ(t) ≤ q


, (2.11)

where FDRλ(t) is a point estimate of FDR(t), which is given by

FDRλ(t) =
pπ̂0(λ)t
R(t) ∨ 1

=
π̂0(λ)t

{R(t) ∨ 1}/p
(2.12)

with π̂0(λ) =

(1 − λ)p

−1
p − R(λ)


is an estimate of π0 for any given λ. We then reject the null hypothesis of βj = 0 if

its associated p-value pj is less than or equal to tq(FDRλ). Next theorem shows that the FDR can be controlled at the nominal
level asymptotically for this special type of threshold values.

Proposition 2. Assume N1/p → 0 and limn→∞ T1,n(t) = T1(t) for some continuous function T1(t), where T1,n(t) = p−1p
j=1 P(pj ≤ t), then under the same conditions as that assumed in Theorem 1, we have that lim supn→∞ FDR


tq(FDRλ)


≤ q.

Remark 3. It is worthy mentioning that the problem of testing the significance of a single regression coefficient in high
dimensional linear regression model has been tentatively studied by Lan et al. [13]. Even though both papers try to first
remove the dependence among the regressors, themethod of [13] is quite different with ours. To access the significance of a
single regression coefficient, Lan et al. [13] proposed to first remove the effect of the predictors that are highly correlatedwith
the target predictor. As noted by Lan et al. [13], their method is only applicable when the predictors are weakly correlated;
see condition (C2) therein. By contrast, our method is applicable for highly correlated predictors by assuming a latent factor
structure. Since the factors are unknown and need to be inferred using principal components, the resulting procedure poses
more challenges when investigating the effect of estimation errors.
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2.6. Model selection consistency

According to the proceeding proposition, for any pre-specified significance level q > 0, FDR can be controlled asymptot-
ically at the nominal level. It further motivates us to investigate the theoretical properties for q → 0, i.e., model selection
consistency. In order to get the property of consistent model selection, we need to analyze the power of the resulting mul-
tiple testing procedure. To this end, we need to assume the following minimum signal and exponential tail assumptions.

(C4) Assume there exist two positive constants κ and Cβ such that minj∈N1 |βj| > Cβn−κ for κ + ξ < 1/2, where ξ was
defined in condition (C2).

(C5) There exists some positive constant Ce such that for any ℓ > 0 and 1 ≤ j ≤ p, P

n−1

|X⊤

j ε| > ℓ


≤ exp(−Cenℓ2).

Condition (C4) is sensible in practice, the condition has been popularly used for variable selection literature [7,18]. Condition
(C5) is also reasonable. Specifically, if the random noise ε is normally distributed, then using the fact that n−1

∥Xj∥
2

→

1, n−1/2X⊤

j ε follows a normal distributionwith finite variance for j = 1, . . . , p. As a result, the condition (C5) can be satisfied.
Under the above conditions, we can demonstrate the following result.

Theorem 3. Under conditions (C1)–(C5) and bounded variance assumption (2.5), further assume


j |βj| < Cmax for some
finite positive constant Cmax, there should exist a sequence of significance levels αn → 0 such that P(Ŝαn = N1) → 1, where
Ŝαn = {1 ≤ j ≤ p : pj ≤ αn}.

The proof is provided in Appendix F. According to the theorem proof, one can select αn at the level of αn = 2{1 − Φ(nȷ)}
with ξ < ȷ < 1/2 − κ . For this special sequences of αn and under the minimum signal assumption (C4), the power of the
test can approach to 1 while preserve reasonable type I error and false discoveries. Compared with the variable screening
method of [19], the proposed testing procedure is able to control the false discovery rate and the type I error for the sequence
of nominal level αn. This finding is quite important especially in finite samples; see, for example, [20,15] and for detailed
discussions.

3. Numerical studies

3.1. Simulation studies

To demonstrate the finite sample performance of the proposed testing procedures, we present here two simulation
examples including three different sample sizes (n = 100, 200, 400), two different dimensions of explanatory variables
(p = 500, 1, 000), and two different dimensions of common factors (d = 1, 3) for the purpose of illustration. For each fixed
parameter setting (i.e., n, p and d), all simulation results were conducted by 1,000 realizations, the nominal levels of the F-
test, z-test and the FDR level were set to be 5%. To access the finite sample performance of the proposed testing procedures,
we evaluate the size of the proposed F-test (FS). Moreover, we measure the performance of the proposed z-test (or t-test)
by the average empirical size (AES). Specifically, let prj be the individual test p-value for testing the significance of the jth
explanatory variable in the rth simulation. Hence, AES can be defined as AES = |N0|

−1 
j∈N0

ERPj, whereN0 = {1 ≤ j ≤ p :

βj = 0}, and the empirical rejection probability (ERP) for the jth explanatory variable test as ERPj = 1000−1 1000
r=1 I(prj <

α). To assess the effect of model selection consistency, we report the average true rate TR = |Sα
∩N1|/|N1| and the average

false rate FR = |Sα
∩ N0|/|N0|. Intuitively, if the testing procedure can identify significant predictors consistently, the FR

should approach to 0 while the TR approaching to 1 as the sample size n → ∞. To guard against the false discoveries, the
empirical FDR based on the procedure proposed by Storey et al. [17] with λ = 1/2 is also reported.

Example 3.1. The predictors Xi is simulated according to (2.4), where each element of Zi, γ and Xij were independently
generated from a standard normal distribution. Moreover, the response Yi is generated according to (2.1), with εi is
independently generated from either a t distribution with 3 degrees of freedom t(3) or amixture distribution 0.1N(0, 32)+
0.9N(0, 1). All of the regression coefficients were set to be zero so that |N1| = 0 and |N0| = p. For the sake of comparison,
the method proposed by Zhong and Chen [22] is also included, we name it as ZC-test. The simulation results based on d = 1
were summarized in Table 1.

A well behaved test should have an empirical size around 5%. As a result, we can expect that both FS and AES should
be close to 5% in this simulation setting. According to the results of Table 1, our proposed F-test totally dominates ZC-test.
Both the proposed F-test and z-test (or t-test) can control the type I error well at the nominal level, regardless of the error
distributions, which are consistent with the theoretical findings in Theorems 1 and 2. By contrast, the size of the ZC test is
alarmingly larger than the nominal significance level. Such a finding is not surprising, since the ZC-test is designed mainly
for weakly dependent data, not for the data with a latent factor structure.

Example 3.2. For the purpose of illustration, we only consider d = 3 in this example, since the results for other settings are
similar. Similar to Example 3.1, each element of Zi and γ are independently generated from a standard normal distribution.
Wenext generateXi.We consider the following two scenarios. In scenario 1, each element ofXi was independently generated
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Table 1
Simulation results for Example 1 with d = 1.

t Distribution Mixture distribution
ZC-test FA-test ZC-test FA-test

n p FS AES FS AES FS AES FS AES

100 500 0.083 – 0.043 0.052 0.088 – 0.058 0.054
1000 0.087 – 0.054 0.055 0.075 – 0.050 0.054

200 500 0.082 – 0.047 0.053 0.078 – 0.051 0.052
1000 0.084 – 0.044 0.052 0.074 – 0.040 0.052

400 500 0.077 – 0.045 0.051 0.075 – 0.047 0.051
1000 0.078 – 0.048 0.051 0.069 – 0.040 0.051

Table 2
Simulation results for Example 2 with d = 3.

Normal distribution Mixture distribution
n p FS AES TR FR FDR FS AES TR FR FDR

Scenario 1

100 500 0.992 0.058 0.968 0.029 0.091 0.991 0.058 0.969 0.029 0.107
1000 0.994 0.058 0.962 0.058 0.106 0.991 0.057 0.970 0.057 0.117

200 500 0.999 0.054 1.000 0.027 0.071 0.999 0.054 0.998 0.027 0.067
1000 0.997 0.054 0.998 0.054 0.074 1.000 0.054 0.999 0.054 0.074

400 500 1.000 0.052 1.000 0.026 0.061 0.999 0.053 1.000 0.026 0.063
1000 1.000 0.052 1.000 0.052 0.053 1.000 0.053 1.000 0.053 0.062

Scenario 2

100 500 0.991 0.058 0.970 0.029 0.105 0.989 0.058 0.971 0.029 0.110
1000 0.995 0.054 0.999 0.055 0.087 0.993 0.058 0.968 0.058 0.115

200 500 0.999 0.055 1.000 0.027 0.081 0.999 0.055 0.999 0.027 0.075
1000 0.997 0.055 0.998 0.055 0.079 0.999 0.054 0.998 0.054 0.719

400 500 1.000 0.053 1.000 0.026 0.070 1.000 0.054 1.000 0.027 0.078
1000 0.998 0.052 1.000 0.052 0.069 0.999 0.053 1.000 0.053 0.068

from a standard normal distribution. In scenario 2,Xi follows amultivariate normal distributionwithmean 0 and covariance
cov(Xi) = (σj1j2) ∈ Rp×p with σj1j2 = 0.1|j1−j2|. As a result, Xij1 and Xij2 are allowed to be weakly correlated. For the two
scenarios, Xi were generated according to (2.4), Yi was generated by (2.1) with εi independently following either aN(0, 1) or
a mixture distribution 0.1N(0, 32) + 0.9N(0, 1). The regression coefficient vector β is β1 = 5, β4 = 3, β7 = 2, and βj = 0
for any j ∉ {1, 4, 7}. All the simulation results were summarized in Table 2.

According to Table 2, when Xis are independently generated according to scenario 1 and ε is normal, FSs are steadily
increasing to 1 as the sample size increases. Similar results can be foundwhen the distribution of ε ismixture, which indicate
that the proposed global significance test is indeed consistent. Moreover, all AES and FDR values are around 0.05 as the
sample size getting large, which suggests that the proposed individual coefficient test performs robustly well. The results
are similar when the Xis are independently generated according to scenario 2. Lastly, for the two scenarios, the TR tends
to 1 and FR tends to 0 as the sample size increases while ε follows both normal and mixture distributions, which are all
consistent with the theoretical findings of Theorem 3.

3.2. Real data analysis

To further illustrate the practical usefulness of the proposed method, we present here a real data analysis. The data
contains a total of n = 409 observations, where the response of interest (Yi) is the daily return of Shanghai Stock Exchange
Composite index and the explanatory variables (X1, . . . , Xp) are p = 757 returns of individual stocks listed in Shanghai stock
market. The sample period of the study is from 2011/1/3 to 2012/9/28. All data are from the CSMR database, which is one of
the most popularly used and authoritative database in China. The main focus of current analysis is intending to identify the
stocks which are significantly associated with the index Yi by assuming a linear relationship exists between Yi and Xi such
that Yi = X⊤

i β + εi for some random error εi, and a portfolio will be constructed by selecting a small number of significant
stocks to track the performance of Shanghai Stock Exchange Composite index.

We first need to estimate the dimension of the latent factors. The criteria proposed by Bai and Ng [2], namely, d̂ =

argmin0≤k≤kmaxPC(k) for kmax = 8, was used to determine the dimension of latent factors, which suggest the presence of
d = 1 factor. Consequently, in the rest of this real data analysis, we will treat the number of common factors d = 1.

The p-value of the proposed F-test is 0. As a result, we next consider how to identify the relevant explanatory variables
that are associated with Yi using the proposed t-test. For each explanatory variable, we consider the following test for every
j = 1, . . . , p,

H0j : βj = 0 vs. H1j : βj ≠ 0. (3.1)
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Fig. 1. The histograms of the p-values of the proposed t-test and MUR for all of the stocks.

For comparison purpose, we also report the results without adjusting for any latent factors, i.e., using marginal univariate
regression (MUR) directly. Fig. 1 depicts the histogram of the p-values of the proposed t-test and MUR for all of the stocks.
As we can see from the histograms, the proposed t-test yields a very flat histogram except for a bump around the point 0.
Among all the 757 stocks, there are 167 stockswith p-values less than the significance level at 5%.Moreover, after controlling
the false discoveries rate for the p-values from the proposed test at 5%, 68 stocks were declared statistically significant. This
finding is quite reasonable. In fact, if the underlying coefficient structure is highly sparse, most of the p-values are computed
for the case that the null hypothesis is true, and the asymptotic distribution of these p-values should be uniform in [0, 1]. In
contrast, the histogram of the MUR is extremely skew, most of the p-values are very small, even after controlling the false
discovery rate, there were a total of 754 stocks that are significant, which indicates that the resulting p-values may not be
reliable.

Based on the selected stocks of the two methods, we constructed two portfolios (CF-portfolio and NoCF-portfolio) to
mimic the Shanghai composite index by linear regression. CF-portfolio consists of the selected stocks by the proposed
t-test, and NoCF-portfolio consists of the selected stocks by the marginal univariate regression without considering any
latent factors. To evaluate the out-of-sample performance of the two portfolios, monthly rolling forecasting process is used
with a constant rolling window of 12 months. For each month, we use the information of its previous 12 months to select
stocks and estimate the resulting regression coefficients, then we form a portfolio consisting of the selected stocks with the
portfolio weights determined by the estimate regression coefficients, and evaluate the return of this portfolio in that month.
Such process which continues until 2012/9 is predicted. As a result, the rolling window length is fixed and we update the
selected stocks and regression coefficients once a month. To measure how closely the portfolio follows the benchmark

index, we calculate the tracking error TEt =


1

T−1

T
t=1(TDt − TD)2, where TDt = Rpt − Rmt is the tracking difference,

Rpt and Rmt are the returns of portfolio and Shanghai Composite index respectively at time t and T is the total number of
replications. The tracking error of the CF-portfolio and NoCF-portfolio are 0.73% and 0.91% respectively, which indicates
that the proposed method in this article is more efficient than the method without adjusting for any factors. In addition, we
also tried the scenario of d = 3, the results are robust and the corresponding tracking error of CF-portfolio is 0.77%. In real
practice, the decisionmakers could take into accountmore information and transaction cost to furtherminimize the tracking
errors.

4. Conclusion

In linear regression model, we develop both F-test and z-test (or t test) for testing global significance and individual
effect of each single variable respectively in ultra high dimension regression when the explanatory variables follow a latent
factormodel. Under the null hypothesis, together with fairlymild conditions on the explanatory variables and latent factors,
we show that the proposed F-test and t-test are asymptotically distributed as weighted chi-square and standard normal
distribution respectively, which are quite different with the results derived by Zhong and Chen [22] when the explanatory
variables are weakly dependent. Moreover, based on the p-value of each predictor, the method of [17] can be used to
implement the multiple testing procedure, and we can achieve consistent model selection as long as we can select the
threshold value appropriately.

To conclude the article, we point out a few possible research avenues in this discussion. Since we only established testing
procedures for linear regression model, it would be interesting to extent the entire testing procedure to other regression
models, which includes generalized linear model [8] and various semiparametric models [10]. Moreover, it would also be
quite practical demanding to allow the explanatory variables to be discrete or ordinal. Lastly, it is also quite interesting to
allow the profiled predictorsXi to be weakly correlated that admit an approximate factor model [5].
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Appendix A. Some useful lemmas

Before proving the theoretical results, we present the following two useful lemmas. Lemma 1 can be proved in a similar
manner by Theorem 2 of [19] under the current conditions (C1)–(C3) together with bounded variance assumption (2.5),
while Lemmas 2 and 3 can be directly found in [12]. As a result, their proofs are omitted to save space.

Lemma 1. Under conditions (C1)–(C3) and the latent factor number d is known, together with the bounded variance
condition (2.5), we can have that n−1tr


Z⊤Q(Ẑ)Z


= Op(n−1) and tr


Q(Ẑ) − Q(Z)

2
= Op(n−1), where Ẑ is defined in

Section 2.3.

Lemma 2. Let V = (V1, . . . , Vm)⊤ ∈ Rm be a multivariate normal vector with E(V ) = 0 and cov(V ) = Im. Then, for any
symmetric m × mmatrix A, we have that (i.) E(V⊤A1V ) = tr(A); (ii.) E(V⊤A1V )2 = tr2(A1) + 2tr(A2

1).

Lemma 3. Let (U1,U2,U3,U4)
⊤

∈ R4 be a 4-dimensional normal randomvectorwith E(Uj) = 0 and var(Uj) = 1 for 1 ≤ j ≤ 4.
We then have E(U1U2U3U4) = δ12δ34 + δ13δ24 + δ14δ23, where δij = E(UiUj).

Appendix B. Proof of Theorem 1

Note thatX = Zγ ⊤
+X. As a result, Tinitial canbedecomposed into the following three parts as Tinitial = Λ1+2Λ2+Λ3 with

Λ1 = n−1p−1Y⊤Zγ ⊤γ Z⊤Y/σ̂ 2, Λ2 = n−1p−1Y⊤Zγ ⊤X⊤Y/σ̂ 2 and Λ3 = n−1p−1Y⊤XX⊤Y/σ̂ 2. We then consider the three
parts separately. We firstly consider Λ3. By Lemma L3 in [19], we have p−1XX⊤

= σ̄ 2IT

1 + op(1)


with σ̄ 2

= p−1tr(Σ).
Consequently, we can obtain Λ3 = σ̄ 2n−1Y⊤Y/σ̂ 2

{1 + op(1)}, which immediately leads to Λ3 = σ̄ 2
{1 + op(1)}. We next

consider Λ2. By Lemma L5 in [19], we have λmax(p−1Zγ ⊤X⊤) = op(1). As a result,

Λ2 = n−1Y⊤
{p−1Zγ ⊤X⊤

}Y/σ̂ 2
≤ λmax(p−1Zγ ⊤X⊤)n−1Y⊤Y/σ̂ 2

= op(1).

We lastly consider Λ1, we show that n−1p−1Y⊤Zγ ⊤γ Z⊤Y/σ̂ 2 is asymptotically weighted chi-square. By condition (C3),
p−1γ ⊤γ → Σγ , we have n−1p−1Y⊤Zγ ⊤γ Z⊤Y/σ̂ 2

= Y⊤

n−1ZΣγ Z⊤


Y/σ̂ 2


1+op(1)


. Moreover, note that n−1Z⊤Z → Id

bymodel specification assumption. Thus, the eigenvalues of n−1ZΣγ Z⊤ should be equal to the eigenvalues of n−1Σγ Z⊤Z =

Σγ


1 + op(1)


. Let λi be the ith largest eigenvalue of Σγ . Consequently, n−1p−1Y⊤Zγ ⊤γ Z⊤Y/σ̂ 2 is asymptotically

distributed as
d

i=1 λiχ
2
1 , which completes the entire proof.

Appendix C. Proof of Proposition 1

Without loss of generality, we only present the proof of the first part, while the second part can be proved in a
similar manner. Note that X = Zγ ⊤

+ X, then we can have n−1p−1tr

X⊤Q(Ẑ)X


= n−1p−1


γ Z⊤Q(Ẑ)Zγ ⊤


+

n−1p−1tr
X⊤Q(Ẑ)X

+ 2n−1p−1tr
X⊤Q(Ẑ)Zγ ⊤

 .
= ∆1 + ∆2 + ∆3. We next consider the three parts separately. By

Lemma1 and condition (C3),we can have that n−1p−1

γ Z⊤Q(Ẑ)Zγ ⊤


≤ n−1tr


Z⊤Q(Ẑ)Z


tr(p−1γ ⊤γ ) = Op(n−1) = op(1).

We next consider ∆2. Note that d is fixed constant, one can verify that n−1p−1tr
X⊤Q(Z)X

= p−1tr(Σ)

1 + op(1)


.

In addition, by Lemma 1 again, we have n−1p−1tr
X⊤


Q(Z) − Q(Ẑ)

X
≤


tr


Q(Z) − Q(Ẑ)

21/2
n−1p−1tr(X⊤X) =

Op(n−1) = op(1). Consequently, we have ∆2 = p−1tr(Σ)

1 + op(1)


. We lastly consider ∆3. Employing Lemma L5 in

[19], we have λmax(p−1Zγ ⊤X⊤) = op(1), which immediately leads to ∆3 = op(1). Combining the results above, we have
n−1p−1tr


X⊤Q(Ẑ)X


− p−1tr(Σ) → 0, which completes the entire proof.

Appendix D. Proof of Theorem 2

Note that Ŷ = X̂β + ε̂. Thus, β̂1 can be decomposed into two parts, β̂1 = T 1
+ T 2 with T 1

= (X̂⊤

1 X̂1)
−1X̂⊤

1 ε and
T2 = (X̂⊤

1 X̂1)
−1X̂⊤

1 X̂1∗β1∗, where X̂1∗ = (X̂j : j ≠ 1) ∈ Rn×(p−1). Consequently, to prove the theorem, it suffices to
show that (T 1, T 2) is asymptotical bivariate-normal since T 1 and T 2 are un-correlated. To this end, we consider T 1 and
T 2 separately. We firstly consider T 1. Note that X̂⊤

1 X̂1 = X⊤

1 Q(Ẑ)X1 = γ ⊤

1 Z⊤Q(Ẑ)Zγ1 + 2γ ⊤

1 Z⊤Q(Ẑ)X̃1 + X⊤

1 Q(Ẑ)X1.
We further consider the three parts of X̂⊤

1 X̂1 separately. Firstly by Lemma 1 and condition (C3), we have γ ⊤

1 Z⊤Q(Ẑ)Zγ1

≤ ∥γ1∥
2tr


Z⊤Q(Ẑ)Z


= Op(1). Moreover, employing Lemma L5 in [19], we can obtain that γ ⊤

1 Z⊤Q(Ẑ)X1 = Op(1). Lastly,
one can verify that X⊤

1 Q(Ẑ)X1 = X⊤

1 Q(Z)X1

1 + op(1)


by Lemma 1, further noting that X⊤

1 Q(Z)X1/σ11 follows a chi-
square distribution of degree n − d. Combining these results above, we can have n−1X̂⊤

1 X̂1 = σ11 + op(1). Moreover,



34 W. Lan et al. / Journal of Multivariate Analysis 144 (2016) 25–37

X̂⊤

1 ε = X⊤

1 Q(Ẑ)ε = γ ⊤

1 Z⊤Q(Ẑ)ε + X⊤

1 ε. Since var

γ ⊤

1 Z⊤Q(Ẑ)ε


= O(1) and var
X⊤

1 ε


= O(n). As a result, X⊤

1 ε should
dominate γ ⊤

1 Z⊤Q(Ẑ)ε, which leads to X̂⊤

1 ε = X⊤

1 ε

1 + op(1)


. Consequently, we have

n1/2T 1
= n−1/2X⊤

1 ε/σ11

1 + op(1)


=


1 + op(1)


n−1/2

n
i=1

Xi1ε1/σ11.

We next consider T 2. Applying the same arguments as those given above, we can obtain that

n1/2T 2
=


1 + op(1)


n−1/2

n
i=1

Xi1Xi1∗β1∗/σ11.

Let δi = Xi1ε1 and ηi = Xi1Xi1∗β1∗ . Then it can be shown that E(δi) = 0 and var(δi) = σ 2σ11. Moreover, we have n1/2E(ηi) =

n1/2σ11∗β1∗ = 0. Subsequently, var(ηi) → E(η2
i ) = σ11β

⊤

1∗E
Xi1∗X⊤

i1∗ |Xi1

β1∗ → σ11β

⊤

1∗

Σ1∗ − Σ1∗1Σ11∗/σ11

β1∗ .

Consequently, by the bivariate Central Limit Theorem, we can thus obtain
n1/2T 1, n1/2T 2

⊤

=

1 + op(1)


n−1/2

n
i=1

(δi, ηi)
⊤/σ11


is asymptotically normal with mean 0 and covariance V = diag(Vii). In addition, V11 = σ 2/σ11 and V22 = β⊤

1∗

Σ1∗ −Σ1∗1Σ11∗/σ11

β1∗/σ11. Consequently, n1/2(T 1

+ T 2) is asymptotical normal with mean 0 and covariance V11 + V22, which
completes the entire proof.

Appendix E. Proof of Proposition 2

According to the proof in [17], to prove the proposition, it suffices to demonstrate the following two results,

1
p

p
j=1

I(pj ≤ t) − T1,n(t) → 0 a.s. and (E.1)

1
N0


j∈N0

I(pj ≤ t) − G0,n(t) → 0 a.s., (E.2)

as p → ∞, where G0,n(t) = N−1
0


j∈N0

P(pj ≤ t). Since the proofs for (E.1) and (E.2) are quite similar, we only verify (E.1).
By the law of large numbers [14], it is enough to show that

var
1
p

p
j=1

I(pj ≤ t)


= O(p−δ) for any δ > 0. (E.3)

Note that the left part of (E.3) is equivalent to

var
1
p

p
j=1

I(|Zj| ≥ z1−t/2)


=
1
p2

p
j=1

var

I(|Zj| ≥ z1−t/2)


+

2
p2


j1≠j2

cov

I(|Zj1 | ≥ z1−t/2), I(|Zj2 | ≥ z1−t/2)


. (E.4)

The first part of (E.4) is O(p−1) by the fact that var

I(|Zj| ≥ z1−t/2)


≤ 1. We next consider the second part, the covariance

is given by

P

|Zj1 | ≥ z1−t/2, |Zj2 | ≥ z1−t/2


− P


|Zj1 | ≥ z1−t/2


P

|Zj1 | ≥ z1−t/2


.

By the proof of Theorem 2, uniformly for any j = 1, . . . , p, we have P(Zj > t) = Φ(−t){1 + op(1)}, where Φ(·) present the
cumulative distribution function of a standard normal distribution. Thus, by the bivariate large deviation result [23] and the
similar argument of [13], to prove the theorem, it suffices to show that

p
j2=1

ρj1j2 = o(p),

for any j1 = 1, . . . , p, where ρj1j2 = cov(Zj1 , Zj2). By the proof of Theorem 2, Zj1 can be written as

Zj1 = {1 + op(1)}n−1/2
n

i=1

Xij1εi +
Xij1

Xij∗1
βj∗1


.
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Consequently, for any j1 ≠ j2, we can have

ρj1j2 = {1 + op(1)}n−1
n

i1=1

n
i2=1


cov(Xi1j1εi1 ,

Xi2j2εi2) + cov(Xi1j1
Xi1j∗1

βj∗1
,Xi2j2εi2)

+ cov(Xi2j2
Xi2j∗2

βj∗2
,Xi1j1εi1) + cov(Xi1j1

Xi1j∗1
βj∗1

,Xi2j2
Xi2j∗2

βj∗2
)


= {1 + op(1)}n−1
n

i1=1

n
i2=1


cov(Xi1j1εi1 ,

Xi2j2εi2) + cov(Xi1j1
Xi1j∗1

βj∗1
,Xi2j2

Xi2j∗2
βj∗2

)

.

We next consider the above two terms separately. One can have

n−1
n

i1=1

n
i2=1

cov(Xi1j1εi1 ,
Xi2j2εi2) = n−1σ 2

n
i=1

cov(Xij1 ,
Xij2) = σj1j2 = 0.

We next consider the term n−1 n
i1=1

n
i2=1 cov(Xi1j1

Xi1j∗1
βj∗1

,Xi2j2
Xi2j∗2

βj∗2
). Note that

n−1
n

i1=1

n
i2=1

cov(Xi1j1
Xi1j∗1

βj∗1
,Xi2j2

Xi2j∗2
βj∗2

) = n−1
n

i=1

cov(Xij1
Xij∗1

βj∗1
,Xij2

Xij∗2
βj∗2

).

Moreover, we can also have cov(Xij1
Xij∗1

βj∗1
,Xij2

Xij∗2
βj∗2

) = E(Xij1
Xij∗1

βj∗1
Xij2

Xij∗2
βj∗2

) − E(Xij1
Xij∗1

βj∗1
)E(Xij2

Xij∗2
βj∗2

). By condition
(C1) and Lemma 3, together with some algebraic simplifications, we can obtain that

cov(Xij1
Xij∗1

βj∗1
,Xij2

Xij∗2
βj∗2

) =


k1∈N1≠j1


k2∈N1≠j2

(σk1k2σj1j2 + σk1j2σk2j1)βk1βk2 .

As a result, we can have cov(Xij1
Xij∗1

βj∗1
,Xij2

Xij∗2
βj∗2

) =


j1≠j2
σj1j1σj2j2βj1βj2 if (j1 ≠ j2) ∈ N1, and cov(Xij1

Xij∗1
βj∗1

,Xij2
Xij∗2

βj∗2
) = 0 otherwise. Consequently, we can have that for any j1 = 1, . . . , p,

p
j2=1

cov(Xij1
Xij∗1

βj∗1
,Xij2

Xij∗2
βj∗2

) =


j1∈N1


j2≠j1

σj1j1σj2j2βj1βj2 = O(N1) = o(p).

Combining these results above, we can thus obtain
p

j2=1

ρj1j2 = o(p),

which completes the entire proof.

Appendix F. Proof of Theorem 3

Let pj and Zj be the corresponding p-values and test statistic for testing βj = 0. Then, to prove the theorem, it suffices to
show that the theorem holds for a special sequence of αn → 0 such that αn = 2{1 − Φ(nȷ)} for some ξ < ȷ < 1/2 − κ . We
only need to verify that

lim
n,p→∞

P

V (αn) > 0


→ 0, and lim

n,p→∞
P

S(αn)/N1 = 1


→ 1,

where S(αn) =


j∈N1
I{pj ≤ αn}. We prove the above parts in the following two steps accordingly.

Step I. We firstly show that P{V (αn) > 0} → 0. Note that τ 2
βj

≥ σ 2/σjj. Further assume σjj = 1 for notation convenience.
Then, we can obtain

|Zj| =

(X̂⊤

j X̂j)
−1X̂⊤

j ε + (X̂⊤

j X̂j)
−1X̂⊤

j Xβ


(n1/2σ̂βj)

≤ σ−1
(X⊤

j Q(Ẑ)Xj)
−1/2X⊤

j Q(Ẑ)ε

 + σ−1
(X⊤

j Q(Ẑ)Xj)
−1X⊤

j Q(Ẑ)Xβ

.
Consequently, by Bonferroni inequality, we obtain

P

V (αn) > 0


= P


max
j∈N0

|Zj| > z1−αn/2


≤ P


max
j∈N0

(X⊤

j Q(Ẑ)Xj)
−1/2X⊤

j Q(Ẑ)ε/σ
 > nȷ/2


+ P


max
j∈N0

(X⊤

j Q(Ẑ)Xj)
−1X⊤

j Q(Ẑ)Xβ
 > σnȷ/2


. (F.5)
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We then consider the above two parts separately. We first consider the first part of (F.5). According to the results of the
proof of Theorems 1 and 2, one can verify that X⊤

j Q(Ẑ)Xj = X⊤

j Q(Z)Xj{1 + op(1)} and X⊤

j Q(Ẑ)ε = X⊤

j Q(Z)ε{1 + op(1)}
uniformly for any j. As a result, by conditions (C4)–(C5) and Bonferroni inequality again, we have

P

max
j∈N0

(X⊤

j Q(Ẑ)Xj)
−1/2X⊤

j Q(Ẑ)ε/σ
 > nȷ/2


≤ P


max
j∈N0

(X⊤

j Q(Z)Xj)
−1/2X⊤

j Q(Z)ε/σ
 > nȷ/4


≤


j∈N0

P

n−1/2

(X⊤

j Q(Z)Xj)
−1/2X⊤

j Q(Z)ε/σ
 > nȷ−1/2/4


≤ p exp(−Cεn2ȷ/16) ≤ exp(−Cεn2ȷ/16 + νnξ ).

Note that ξ < 2ȷ by definition. Thus, the first term of the above equation −Cεn2ȷ/4 should dominate the second term νnξ ,
which immediately leads to

lim
n,p→∞

P

max
j∈N0

(X⊤

j Q(Ẑ)Xj)
−1/2X⊤

j Q(Ẑ)ε/σ
 > nȷ/2


→ 0.

Furthermore, similar to the proof of Theorem 2, uniformly for any j = 1, . . . , p, we can have

(X⊤

j Q(Ẑ)Xj)
−1/2X⊤

j Q(Ẑ)Xβ = (X⊤

j Q(Z)Xj/n)−1/2n1/2

j′≠j

ϱ̂jj′(Z)βj′{1 + op(1)}

≤ Cmax


min

j
n−1X⊤

j Q(Z)Xj

−1/2
max
j′≠j

|n1/2ϱ̂jj′(Z)|,

where the last inequality is due to the condition that


j |βj| < Cmax, and ϱ̂jj′(Z) is the sample partial covariance of Xij and Xij′

after controlling for the effect of Z . We next consider the above two parts separately. Firstly, by Bonferroni inequality and
condition (C1), we have maxj |n−1X⊤

j Q(Z)Xj − σjj| = op(1). Consequently, we have {minj n−1X⊤

j Q(Z)Xj}
−1/2

= Op(1).
We next consider maxj′≠j |n1/2ϱ̂jj′(Z)|. By model assumption that cov(Xij′ ,Xij) = 0 for any j′ ≠ j, we can verify that
maxj′≠j |n1/2ϱjj′(Z)| = 0,whereϱjj′(Z) is the partial covariance ofXij andXij′ after controlling for the effect of Z . Consequently,
using Corollary 1 of Kalisch and Buhlmann [11] together with Bonferroni inequality, we can immediately obtain

max
j,j′

P

max
j′≠j

|n1/2ϱ̂jj′(Z)| > O(nb/2)


→ 0

for every ξ < b < 1. We set b = (ξ + ȷ)/2, then we can have maxj′≠j |n1/2ϱ̂jj′(Z)| = o(nb/2) = o(nȷ). This together with the
results that {minj n−1X⊤

j Q(Z)Xj}
−1/2

= Op(1) leads to

P

max
j∈N0

(X⊤

j Q(Z)Xj)
−1X⊤

j Q(Z)Xβ
 > σnȷ/2


→ 0.

Combining these results above, we have completed the first part of (F.5).
Step II.We next consider the second part of (F.5). By definition, we have

N−1
1 S(αn) = N−1

1


j∈N1

I

|n1/2β̂j/σ̂βj | > nȷ


.

According to the proof of the first part of (F.5), we have maxj |n1/2(β̂j − βj)/σ̂βj | = o(nȷ). Moreover, according to theorem
assumption that minj∈N1 |βj| ≥ Cβn−κ for some constants Cβ > 0, we can immediately have minj∈N1 |n1/2βj/σ̂βj | =

O(|n1/2−κ
|). Consequently, by Bonferroni inequality and the fact that ȷ + κ < 1/2, we can obtain

P

N−1

1 S(αn) = 1


= P

min
j∈N1

|n1/2(β̂j − βj)/σ̂βj + n1/2βj/σ̂βj | > nȷ


≥ P

min
j∈N1

|n1/2βj/σ̂βj | > nȷ


− P

max
j∈N1

|n1/2(β̂j − βj)/σ̂βj | > 2nȷ


→ 1,

which completes the second part of (F.5). Combining these results above, we have completed the entire proof of Theorem 3.
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