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Abstract Fractional data that are restricted in the standard unit interval (0, 1) with a highly
skewed distribution are commonly encountered. Such data arise in various areas, such as
economics, finance, and medicine, among others. One natural idea to model such data is to
use the beta family due to its flexibility to accommodate various density shapes. In this paper,
we propose a nonparametric additive beta regression model along with a variable selection
procedure, where the mean response is related to covariates through the combination of
unknown functions of covariates, which can be approximated on a B-spline basis. By using
this approximation method, we transform the problem of variable selection into the problem
of selecting the groups of coefficients in the expansion. Based on the penalized likelihood
method for group variable selection, we successfully select the significant covariates. More-
over, the estimation and selection consistencies and the properties of the penalized estimators
are established. The simulation studies demonstrate that the performance of our proposed
method is quite good. Finally, we apply the proposed method to body fat data, and we obtain
several important findings with satisfactory selection and prediction performance.

Keywords Nonparametric additive beta regression · Fractional data · Variable selection ·
Group SCAD

1 Introduction

Fractional (or proportional) data are commonly encountered inmany areas, such asmedicine,
economics, and finance. One typical example of such data is body fat data, in which the
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percentage of body fat is within the unit interval (0, 1), and its distribution is highly skewed
(see Fig. 1). Other examples of fractional data can be found in the forms of firm dividend
yields, test pass rates, company market shares, television rates and so on. As we can observe,
such fractional data generally cannot be negative, the distribution is asymmetric and highly
skewed, and in particular, the errors are likely to be heteroscedastic and responses to covariates
nonlinear. All of these attributes make properly modeling fractional data difficult and present
us with several interesting statistical challenges.

Over the past two decades, various approaches have been proposed to model fractional
data. As we know, the most straightforward approach to model such data is to use linear
regression. However, one can easily argue that the linear regression model cannot always
guarantee that the fitted or predicted values will fall into the unit interval (0, 1), which makes
the results questionable and difficult to be interpreted. Moreover, linear regression may also
incur the heteroscedasticity problem (Fang and Ma 2013; Ferrari and Cribari-Neto 2004). To
overcome such issues, one possible approach is to first transform the response such that it can
take valueswithin (−∞,+∞) and then apply a regressionmodel to the transformed response.
Unfortunately, such an approach still has shortcomings; one shortcoming is that the coeffi-
cients cannot easily be interpreted in terms of the original response, and another shortcoming
is that the fractional response is generally asymmetric and highly skewed. Consequently, the
inference based on the normality assumption might be misleading. Another approach that
appears to bemore appealing is to use beta regression, whichwas originally studied by Ferrari
and Cribari-Neto (2004). In beta regression, the response variable is assumed to follow a beta
distribution within the unit interval (0, 1). Note that the density of the beta distribution has
different shapes depending on the values of the two parameters that index the distribution
(Johnson et al. 1995; Ferrari and Cribari-Neto 2004); therefore, the beta distribution provides
a very flexible approach for modeling fractional data. Moreover, beta regression has an addi-
tional benefit in that it has the same interpretation as logistic regression, and its coefficients
can be estimated by the maximum likelihood estimation method.

Let (yi , X�
i )�, i = 1, . . . , n, be vectors that are independent and identically distributed

as (y, X), where y is a response variable that is restricted to the unit interval (0, 1) and
Xi = (xi1, . . . , xip)� ∈ R

p is the i th observation of the p covariates, which are assumed to
be fixed and known. To obtain a regression structure for the mean of the response y ∈ (0, 1),
Ferrari and Cribari-Neto (2004) reparameterized the beta density as follows:

f (y;μ, φ) = �(φ)

�(μφ)�(φ)
yμφ−1(1 − y)(1−μ)φ−1, (1.1)

where μ ∈ (0, 1) is the mean of y, φ > 0 is a precision parameter, and �(·) is the gamma
function. The variance of y is var(y) = μ(1− μ)/(1+ φ). To work with this distribution in
a regression model related to some covariates, Ferrari and Cribari-Neto (2004) proposed the
following linear beta regression model:

g(μi ) =
p∑

j=1

xi jβ j , (1.2)

where g(·) is a strictly monotonic and twice-differentiable link function that maps (0, 1) into
R; xi j , i = 1, . . . , n, j = 1, . . . , p, is the i th observation of the j th covariate; and β j is the
coefficient of the j th covariate. The modeling and statistical inference procedures are similar
to those for generalized linear models, except that the distribution of the response variable
is not required to be a member of the exponential family. Within this framework, the mean
response is related to a linear combination of covariates through a known link function g(·),
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and this model setting has commonly been used in practice due to its simplicity. However,
when the relationship between covariates and transformed response is not linear, the above
model setting may become too restrictive and could also be misleading. As a direct solution
to this issue, it may be better to assume that the mean response is related to covariates through
the combination of some unknown functions of covariates, which means that the covariates
are nonparametric additive.

Meanwhile, the measurements are obtained based on a large number of potential covari-
ates to avoid missing any important link between a predictive factor and the response. It
is well known that the classical maximum likelihood estimator method suffers from large
variances in this case and may lead to overfitting. Moreover, it is possible that the number of
variables may be larger than the sample size. To address such cases with high-dimensional
data, an approach called variable selection has become increasingly popular and received
considerable attention in diverse fields of scientific research. Based on the gamboostLSS
algorithm proposed by Rigby and Stasinopoulos (2005), Schmid et al. (2013) proposed a
boosted beta regression. However, no consistency theory was established to show that the
variable selection procedure of their proposed boosted beta regression is consistent. Zhao
et al. (2014) proposed variable selectionmethods for parametric linear beta regressionmodels
using the penalized likelihood method, which has been successfully developed over the past
decade to address high dimensionality while simultaneously selecting important variables
and estimating their effects in high-dimensional statistical inference (Fan and Lv 2010). To
the best of our knowledge, the nonparametric beta regression has not been investigated, nor
has variable selection for nonparametric beta regression, which is the main focus of this
paper.

Aswe know,many penalizedmethods have been proposed to select the significant nonzero
components for nonparametric regression. Among these studies, Zhang et al. (2004) and Lin
andZhang (2006) investigated the use of penalizedmethods in smoothing splineANOVAwith
a fixed number of covariates. Xue (2009) proposed a penalized polynomial spline method
for simultaneous variable selection and model estimation in additive models by using the
SCAD penalty. Huang et al. (2010) proposed the adaptive group LASSO to select nonzero
components in nonparametric additivemodels.Meier et al. (2008) extended the groupLASSO
to logistic regression. Although many methods have been proposed for variable selection in
both parametric and nonparametric regression models, our literature review suggests that no
research has been performed for the nonparametric beta regression model.

In this paper, we aim to extend the linear beta regression model to the nonparametric
additive beta regressionmodel, which enables us tomodel possiblemisspecification in amore
flexible and robust manner.We further employ the SCAD penalty for group variable selection
based on the B-spline approximations to the nonlinear functions. By using the B-spline
approximation method, each nonlinear function can be represented by a linear combination
of spline basis functions. Consequently, the problem of nonlinear function selection becomes
the problem of selecting the groups of coefficients in the linear combinations. To this end,
we propose a penalized group variable selection method that simultaneously selects the
significant functions and estimates the group of coefficients. In addition, the estimation and
selection consistencies of the proposed penalized estimators are established. The numerical
study demonstrates that our proposed method could outperform other competing alternative
methods.

The remainder of this paper is organized as follows. Section 2 describes the nonparametric
beta regression and its variable selection procedure. The asymptotic properties of the proposed
method are presented in Sect. 3. Section 4 presents the results of simulation studies to evaluate
the finite sample performance of the proposed method. An illustrative application to body
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fat data is provided in Sect. 5. Section 6 includes concluding remarks. Proofs of the results
presented in Sect. 3 are provided in the “Appendix”.

2 Models and methodology

In this section, we propose the following nonparametric additive beta regression:

g(μi ) =
p∑

j=1

f j (xi j ), (2.1)

where μi = E(yi ), i = 1, . . . , n, is the mean of the response. g(·) is a strictly monotonic
and twice- differentiable link function that maps (0, 1) into R, and we use the logit link
function g(μ) = log

{
μ/(1 − μ)

}
in this study. Therefore, the results of a beta regression

have essentially the same interpretation as those of a logistic regression. Note that other link
functions may be used in place of the logit function. f j s are unknown smooth functions to be
estimated, and suppose that some of them are zero. Note that the variance of yi is a function
of μi and consequently of the covariate values. Hence, nonconstant response variances are
naturally accommodated in the model.

In the spirit of Huang et al. (2010), we use B-splines to approximate each of the unknown
functions f j s. Suppose that each x j takes values in a finite interval [a, b] for a < b. To
ensure unique identification of the f j s, we assume that E f j (xi j ) = 0, 1 ≤ j ≤ p. Moreover,
let a = ξ0 < ξ1 < · · · < ξK < ξK+1 = b be a partition of [a, b] into K subintervals
with the kth interval Ikt = [ξt , ξt+1) for k = 0, . . . , K − 1, and IK K = [ξK , ξK+1], where
K ≡ Kn = nη with 0 < η < 0.5 is a positive integer such that max1≤k≤K+1 |ξk − ξk−1| . Let
Sn be the space of polynomial splines of degree h ≥ 1 consisting of functions s satisfying
(i) the restriction of s to Ikt is a polynomial of degree h for 1 ≤ k ≤ K ; (ii) for h ≥ 2 and
0 ≤ h∗ ≤ h − 2, s is h∗ times continuously differentiable on [a, b]. According to the results
in Schumaker (1981) and Huang et al. (2010), for any fn j ∈ Sn , there exists a normalized
B-spline basis {�k, 1 ≤ k ≤ mn} in Sn with mn ≡ Kn + h such that

fn j (x) =
mn∑

k=1

β jk�k(x), 1 ≤ j ≤ p. (2.2)

Under suitable smoothness assumptions, the f j s can be well approximated by functions
in Sn . For example, suppose there are two knots, a = ξ0 < ξ1 < ξ2 < ξ3 = b, and
that the degree of polynomial h is 3; then, the specific representations of B-spline functions
are �1(x) = 1,�2(x) = x,�3(x) = x2,�4(x) = x3,�5(x) = (x − ξ1)

3+,�6(x) =
(x − ξ2)

3+, where t+ denotes the positive part. More generally, an order h spline with knots
ξk, k = 1, . . . , K is a piecewise-polynomial of order h and has continuous derivatives up to
order h − 2. The general form for the truncated-power basis set would be �i (x) = xl−1, l =
1, . . . , h,�h+ j (x) = (x − ξ j )

h−1+ , j = 1, . . . , K , as noted by Hastie et al. (2009).
For each function f j , j = 1, . . . , p, we can approximate it using the functions in Sn .

Therefore, we can have the following approximation

f j (x) ≈ fn j (x) =
mn∑

k=1

β jk�k(x)

with mn coefficients β jk, k = 1, . . . ,mn . For simplicity, we assume that all f j s have the
same value mn . As we know, the convergence rate of fn j (x) − f j (x) largely depends on
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mn , and we will discuss the selection of mn later. The first basic function of each fn j is
�1(x) = 1, which is simply the intercept. Consequently, we do not need to include the
first basic function in every expansion, and we only need to add the intercept in front of the
combination of fn j s and approximate every fn j with the B-spline basis without the first basic
function. For notational convenience, we still notate the index from 1 to k, that is, � j is the
original � j+1. Subsequently, g(ui ) defined in Eq. (2.1) can be approximated as

g(μi ) ≈ β0 +
p∑

j=1

mn∑

k=1

β jk�k(xi j ). (2.3)

Therefore, the problem of distinguishing the nonzero components from the zero compo-
nents and estimating the nonzero components in Eq. (2.1) is equivalent to the problem of
distinguishing the nonzero group coefficients from the zero group coefficients in Eq. (2.3).
Consequently, if f j ≡ 0, then we expect that all β jks are also equal to 0. Note that the coef-
ficients of the zero function are all zero as a group, which motivates us to use the penalized
likelihood estimator for group variable selection to select out the zero functions.

Let β j = (β j1, . . . , β jmn )
�, and let β = (β�

1 , . . . , β�
p )�. Let ||b||2 = (

∑mn
k=1 |bk |2)1/2

denote the l2 norm of any vector b ∈ Rmn . The penalized likelihood estimator for group
variable selection is obtained by maximizing the following objective function:

L(β, φ) = l(β, φ) − n
p∑

j=1

w j (mn)Pλ(||β j ||2), (2.4)

where l(β, φ) = ∑n
i=1 li (μi , φ) is the log-likelihood function; li (μi , φ) = ln�(φ) −

ln�(μiφ) − ln�((1 − μi )φ) + (μiφ − 1) ln yi + {(1 − μi )φ − 1} ln(1 − yi ); Pλ(·) is a
penalty function, which conducts regularized estimation and, more importantly, selection of
important covariates; and w j (·) is used to rescale the penalty with respect to the dimension-
ality of the parameter vector β j . Sincemn are the same for all covariates, we usew j (mn) = 1
in the remainder of this paper for simplicity. The penalized likelihood estimators are then
defined as (β̃n, φ̃) = argmaxβ,φL(β, φ).

There are a series of group penalties, such as groupLASSO, group adaptive LASSO, group
SCAD, and group MCP. In this paper, we use the group SCAD in the simulation studies of
Sect. 5 and the real data analysis in Sect. 6. The penalty function of SCAD is

Pλ,γ (θ) =

⎧
⎪⎨

⎪⎩

λθ, θ ≤ λ
γλθ−0.5(θ2+λ2)

γ−1 , λ < θ ≤ λγ

λ2(γ 2−1)
2(γ−1) , θ > λγ

(2.5)

where λ > 0 and γ > 2 are tuning parameters. Note that group SCAD can be replaced by
any other penalty, such as group MCP.

The penalized likelihood estimator β̃n = (β̃�
n1, . . . , β̃

�
np)

� ∈ R
p is obtained by

maximizing the penalized objective function using some nonlinear optimization algo-
rithm based on the Newton algorithm (see Nocedal and Wright 1999), such as the
new unified algorithm proposed by Fan and Li (2001). The optimization algorithms
require specification of the initial values to be used in the iterative scheme. Let X =
(X1, . . . , Xn)

T = (xi j )n×p and Z = (g(y1), . . . , g(yn))�. According to Ferrari and
Cribari-Neto (2004), the initial value for β can be obtained by the ordinary least
squares estimator based on linear regression of the transformed response Z on �(X),
where �(X) = (1,�1(x1), . . . , �mn (x1), . . . , �1(xp), . . . , �mn (xp)) with �k(x j ) =
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(�k(x1, j ), . . . , �k(xn, j )
� and 1 is an n-dimensional vector with all elements equal to 1.

That is, βini tial = (�(X)��(X))−1�(X)�Z . We also need an initial guess for the value
of φ. As shown, var(yi ) = μi (1−μi )

1+φ
implies that φ = μi (1−μi )

var(yi )
− 1. Since var(g(yi )) ≈

var{g(μi )+ (yi −μi )g′(μi )} = var(yi ){g′(μi )}2, we take φ = 1
n

∑n
i=1

μ̌i (1−μ̌i )

σ̌ 2
i

−1, where

μ̌i = g−1(�(X)iβini tial)) and σ̌ 2
i = ě�ě/[(n−(mn p+1)){g′(μ̌i )}2]with ě = Z−Xβini tial ,

where g′ is the first derivative of g and �(X)i is the i th row of �(X).
Overall, the corresponding computational algorithm is as follows.

Algorithm 1:
1. Calculate �(X) and convert y1, . . . , yn to Z .
2. Determine the initial values of β and φ as βini tial and φini tial as follows.

(a) βini tial = (�(X)��(X))−1�(X)�Z
(b) Calculate μ̌i =g−1(�(X)iβini tial )), ě= Z−Xβini tial , σ̌

2
i = ě�ě/[(n − (mn p+1)){g′(μ̌i )}2]

(c) φ = 1
n

n∑
i=1

μ̌i (1−μ̌i )

σ̌2
i

− 1

3. Maximize the objective function with the Newton algorithm.

Note that there are two parameters in Eq. (2.4), in which the tuning parameter λ can be
selected using fivefold cross-validation, whereas for the value of γ in SCAD, Fan and Li
(2001) suggested examining a small number of values. In our numerical study, we observed
that the results are not very sensitive to γ = 3.7; therefore, we set γ = 3.7.

3 Asymptotic properties

We present the theoretical results of the proposed method in this section. Let k be a nonneg-
ative integer, and let F be the class of functions f on [a, b], whose kth derivative f (k) exists
and satisfies the following Lipschitz condition of order α:

| f (k)(s) − f (k)(t)| ≤ C |s − t |α for s, t ∈ [a, b]
where α ∈ (0, 1] satisfy d = α + k > 0.5. Without loss of generality, we assume that the
first q components of Eq. (2.1) are nonzero, i.e., f j (x) �= 0 for 1 ≤ j ≤ q , and f j (x) = 0

otherwise. Let FF = {1, . . . , p} and FT = {1, . . . , q}. Define || f ||2 = [∫ b
a f 2(x)dx]1/2 for

any function f whenever the integral exists. To proceed, we first set the following technique
conditions, which are helpful for deriving the theoretical results.

(C1) The number of nonzero components q is fixed, and there is a finite constant c f > 0
such that min1≤ j≤q || f j ||2 ≥ c f .

(C2) We assume that the unknown functions f j (x) ∈ F and E{ f j (X j )} = 0 for any
j = 1, . . . , q .

(C3) The covariate vector X j for any j = 1, . . . , p has a continuous density, and con-
stants C1 and C2 exist such that the density function g j of X j satisfies 0 < C1 ≤
supa≤x≤b g j (x) ≤ C2 < ∞ for every 1 ≤ j ≤ p.

(C4) Define  as the asymptotic covariance of the maximum likelihood estimator β∗, i.e.,
 = −[

n−1E{l ′′(β∗)}]−1, where l ′′(·) represents the corresponding second derivative
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of l(·). We assume that finite constants C3 > 0 and C4 > 0 exist such that 0 < C3 <

λmin() ≤ λmax() < C4 < ∞.

Conditions (C1)–(C3) are directly from Huang et al. (2010), condition (C4) ensures that the
maximum likelihood estimator of β is well defined, and these conditions are all mild and
sensible in practice. By Lemma 1 of Huang et al. (2010), under conditions (C2) and (C3),
an fn satisfying || fn − f ||2 = Op(m−d

n + m1/2
n n−1/2) exists. Specifically, if we choose

mn = O(n1/(2d+1)), then || fn − f ||2 = Op(m−d
n ) = Op(n−d/(2d+1)). For convenience,

we use mn = O(n1/(2d+1)) in the subsequent analysis. Then, we can establish the following
theorem.

Theorem 1 (Estimation consistency) Define F̃T = { j : ||β̃nj ||2 �= 0, 1 ≤ j ≤ p}, and let
|M| denote the cardinality of any setM ⊆ {1, . . . , p}. Under conditions (C1)–(C4), we can
obtain the following:

(i) With probability converging to 1, |F̃T | ≤ M1|FT | = M1q for a finite constant M1 > 1.
(ii) If

[
max{P ′

λ(||β j ||2)}2
]
mn/n2 → 0 as n → ∞, then P(F̃T ⊃ FT ) →p 1.

(iii)
p∑

j=1
||β̃nj − β j ||22 = Op(m−2d+1

n ) + Op(
4max {P ′

λ(||β j ||2)}2m2
n

n2
) .

The proof of Theorem 1 is provided in “Appendix A”. In this theorem, we generalize the
results of Huang et al. (2010), which were established for the nonparametric additive linear
regressionmodel, to the nonparametric additive beta regressionmodel. Our theoretical results
imply that, as long as max{P ′

λ(||β j ||2)}2mn/n2 → 0, the proposed selection procedure can
select the nonzero functions with probability approaching 1, and the resulting estimators are
all consistent. However, from Theorem 1, we still do not know whether this method can rule
out all zero predictors. Therefore, further studies on the properties of selection consistency
are needed, whichmotivates us to propose the following assumptions on the penalty function.

(C5) Assume that

max{P ′
λ(||β j ||2)}m1/4

n

nrn
= o(1) and

n

max {P ′
λ(||β j ||2)}m(2d+1)/2

n

= o(1),

where rn max j∈FF/FT ||β̃nj ||2 = Op(1). Define βn=0β if sign0||β̃nj || = sign0||β j || for any
1 ≤ j ≤ p, where sign0(|x |) = 1 if |x | > 0 and = 0 if |x | = 0. Under the above conditions,
we can derive the following theorem.

Theorem 2 (Selection consistency) Under conditions (C1)–(C5), we have:

(i) P(β̃n=0β) → 1.

The proof is given in “Appendix B”. Theorem 2 implies that the signs of the estimated
coefficients are the same as the real ones as a group with probability converging to 1.

Basedon the above results inTheorems1 and2,we can subsequently prove that the nonzero
functions involved in Eq. (2.1) can be consistently selected with probability approaching 1.
The results are summarized in the following proposition. Since the proofs are similar to that
of Theorem 4 in Huang et al. (2010), we refer the reader to the work of Huang et al. (2010)
for more details and omit the corresponding proof.

Proposition 1 Define f̂ j (x) = ∑mn
k=1 β̃ jk�k(x). Under conditions (C1)–(C5), we have

(i) P(|| f̂ j ||2 > 0, j ∈ FT and || f̂ j ||2 = 0, j ∈ FF/FT ) →p 1.
(ii)

∑q
j=1 || f̂ j − f j ||22 = Op

(
m−2d

n

) + Op
(
4mn(max {P ′

λ(||β j ||2)})2/n2
)
.
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4 Simulation studies

We conduct simulation studies to assess the performance of our proposed approach and
compare it with alternative methods. The covariates are simulated from a multivariate nor-
mal distribution with two types of correlation structures of covariates: (a) no correlation
(independence) and (b) autoregressive correlation, where the correlation coefficient between
covariates j and k is 0.5| j−k|. The response data are generated from the model

f (yi ;μi , φ) = �(φ)

�(μiφ)�(φ)
yμiφ−1
i (1 − yi )

(1−μi )φ−1

g(μi ) =
p∑

j=1

f j (xi j ), 0 < yi < 1, i = 1, . . . , n,

and the following specific examples are considered.

Example 1 In this example, we set p = 12 and consider n = 100, 300, 500 and φ =
10, 60, 120. We set f1(x1) = 0.6 exp(−0.8x21 ), f2(x2) = 0.3 ln(x22 + x2 + 1), f3(x3) =
−0.5x23 , f4(x4) = 0.3x4, f5(x5) = 0.5 sin(0.2πx5), f6(x6) = 0.5x6, and f7(x7) = · · · =
f12(x12) = 0. Thus, in the true model, the number of nonzero functions and the number of
zero functions are both 6.

Example 2 In this example, we set p = 30 and consider n = 300, 500 and φ = 10, 60, 120.
We set f1(x1) = 0.2 ln(x21 + 1), f2(x2) = 0.3 exp(−x2), f3(x3) = 0.2(1− x3)x3, f4(x4) =
0.5 sin(0.2πx4), f5(x5) = 0.3x5, and f6(x6) = · · · = f30(x30) = 0. Thus, in the true model,
the number of nonzero functions is 5, and the number of zero functions is 25.

Aswe can see, Example 2 hasmore covariates than Example 1.Moreover, the covariates in
Example 2 are more sparse since its ratio of the number of significant variables to the number
of total variables is 1/6, whereas that in Example 1 is 1/2. To better evaluate the performance
of the proposed method (group SCAD), we also consider two direct competitors: parametric
linear beta regression with SCAD (pSCAD) and boosted nonlinear beta regression (boost).
Parametric linear beta regression does not take the grouping structure in the spline expansions
of the components into account. We note that it may not be fair to compare the parametric
linear beta regression with the proposed nonparametric additive beta regression and boosted
nonlinear beta regression since the generating model is highly nonlinear. Our purpose is to
illustrate that it is necessary to use nonlinear models when the underlying model is nonlinear
in the case of variable selection with high-dimensional data and that model misspecification
could lead to poor selection results. In group SCAD, we use the cubic B-spline with two
knots for all functions f j ( j = 1, . . . , p). The locations of the two knots are 1/3 quantile and
2/3 quantile. The boosted beta regression is implemented by the R package “gamboostLSS”.
To evaluate the estimation performance of the proposed model, the mean square error (MSE)
is used, which is computed as n−1 ∑n

i=1 (ŷi − yi )
2. Moreover, we measure the performance

of the selection by the true positive number of selected variables (TP) and the false positive
number of selected variables (FP), which are generally used for measuring the performance
of variable selection (Breheny and Huang 2015; Wu et al. 2014). All simulation results are
obtained through200 replications. The simulation results ofExamples 1 and2 are summarized
in Tables 1 and 2, respectively.

Table 1 shows that the proposed nonparametric additive beta regression with group SCAD
has a comparable MSE with boosted beta regression, and both of them have a smaller MSE
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Table 1 The results of Example 1

φ n Group SCAD pSCAD Boost

MSE TP FP MSE TP FP MSE TP FP

Independent

10 100 0.0299 5.6 1.5 0.0447 4.0 1.8 0.0256 6.0 4.0

(0.0052) (0.5) (1.3) (0.0060) (0.9) (1.5) (0.0033) (0.0) (1.1)

300 0.0225 6.0 1.3 0.0413 4.9 1.6 0.0218 6.0 3.5

(0.0022) (0.0) (0.9) (0.0031) (0.8) (1.2) (0.0019) (0.0) (0.8)

500 0.0209 6.0 1.1 0.0398 5.0 1.8 0.0207 6.0 2.7

(0.0016) (0.0) (1.1) (0.0023) (0.7) (1.5) (0.0014) (0.0) (1.0)

60 100 0.0064 6.0 1.2 0.0284 4.6 2.7 0.0055 6.0 4.4

(0.0013) (0.2) (1.2) (0.0053) (0.6) (1.3) (0.0010) (0.0) (1.4)

300 0.0042 6.0 1.2 0.0243 5.2 2.3 0.0041 6.0 4.8

(0.0005) (0.0) (1.1) (0.0028) (0.8) (1.5) (0.0005) (0.0) (1.2)

500 0.0039 6.0 0.7 0.0244 4.9 1.5 0.0039 6.0 5.3

(0.0003) (0.0) (0.6) (0.0021) (0.7) (0.9) (0.0002) (0.0) (0.8)

120 100 0.0040 6.0 1.3 0.0234 4.8 2.6 0.0033 6.0 4.4

(0.0014) (0.0) (1.2) (0.0056) (0.9) (1.1) (0.0009) (0.0) (1.3)

300 0.0021 6.0 0.8 0.0221 4.9 2.2 0.0021 6.0 5.2

(0.0002) (0.0) (0.8) (0.0023) (0.6) (1.4) (0.0002) (0.0) (1.0)

500 0.0021 6.0 0.8 0.0223 4.9 2.0 0.0021 6.0 5.7

(0.0002) (0.0) (0.8) (0.0022) (0.6) (1.2) (0.0002) (0.0) (0.5)

Autoregressive correlation

10 100 0.0287 5.7 2.1 0.0408 4.1 0.9 0.0260 5.9 3.6

(0.0054) (0.7) (1.8) (0.0046) (0.7) (0.9) (0.0043) (0.4) (1.5)

300 0.0221 6.0 1.6 0.0372 4.4 1.0 0.0211 6.0 2.9

(0.0024) (0.2) (0.9) (0.0038) (0.7) (0.9) (0.0016) (0.0) (1.1)

500 0.0203 6.0 1.6 0.0369 4.9 1.0 0.0202 6.0 2.4

(0.0014) (0.0) (1.5) (0.0026) (0.9) (0.6) (0.0012) (0.0) (0.9)

60 100 0.0062 6.0 1.6 0.0216 4.6 2.1 0.0051 6.0 4.7

(0.0012) (0.0) (1.1) (0.0029) (0.8) (1.3) (0.0010) (0.0) (1.2)

300 0.0041 6.0 1.1 0.0211 4.8 1.7 0.0040 6.0 5.0

(0.0003) (0.0) (1.4) (0.0021) (0.7) (1.2) (0.0003) (0.0) (1.2)

500 0.0039 6.0 1.4 0.0211 4.9 1.8 0.0038 6.0 5.2

(0.0004) (0.0) (1.1) (0.0018) (0.8) (1.0) (0.0003) (0.0) (1.0)

120 100 0.0032 6.0 1.7 0.0204 4.4 1.9 0.0027 6.0 5.1

(0.0007) (0.0) (1.7) (0.0053) (1.0) (1.3) (0.0005) (0.0) (0.8)

300 0.0021 6.0 1.3 0.0205 5.0 2.3 0.0022 6.0 5.0

(0.0002) (0.0) (1.2) (0.0025) (0.8) (1.2) (0.0002) (0.0) (1.4)

500 0.0020 6.0 1.1 0.0198 5.1 1.6 0.0020 6.0 5.5

(0.0002) (0.0) (1.1) (0.0021) (0.6) (1.0) (0.0002) (0.0) (0.6)
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Table 2 The results of Example 2

φ n Group SCAD pSCAD boost

MSE TP FP MSE TP FP MSE TP FP

Independent

10 300 0.0244 4.6 2.1 0.0277 4.3 6.2 0.0231 4.9 7.9

(0.0022) (0.5) (2.2) (0.0015) (0.5) (2.8) (0.0013) (0.3) (5.3)

500 0.0223 4.8 1.2 0.0272 4.5 7 0.0217 5.0 8.7

(0.0021) (0.4) (1.0) (0.0018) (0.5) (2.4) (0.0014) (0.0) (3.6)

60 300 0.0047 4.9 0.9 0.0104 4.4 7.9 0.0047 5.0 10.3

(0.0004) (0.3) (1.4) (0.0007) (0.5) (2.8) (0.0004) (0.0) (4.5)

500 0.0040 5.0 1.3 0.0099 4.4 9.7 0.0043 5.0 8.7

(0.0004) (0.0) (1.6) (0.0009) (0.5) (2.3) (0.0004) (0.0) (5.9)

120 300 0.0023 5.0 0.6 0.0085 4.4 9.1 0.0025 5.0 5.6

(0.0002) (0.0) (0.8) (0.0009) (0.5) (2.7) (0.0003) (0.0) (4.1)

500 0.0021 5.0 1.1 0.0084 4.1 10.2 0.0023 5.0 5.9

(0.0002) (0.0) (1.0) (0.0009) (0.3) (1.7) (0.0002) (0.0) (4.2)

Autoregressive correlation

10 300 0.0249 4.6 1.4 0.0280 4.4 7.5 0.0243 4.9 9.6

(0.0021) (0.5) (1.3) (0.0025) (0.5) (2.0) (0.0020) (0.3) (3.4)

500 0.0227 4.8 1.3 0.0272 4.4 7.7 0.0227 4.9 9.2

(0.0015) (0.4) (1.7) (0.0018) (0.5) (2.7) (0.0014) (0.3) (4.0)

60 300 0.0044 5.0 0.5 0.0094 4.4 9.3 0.0048 5.0 11.4

(0.0005) (0.0) (1.0) (0.0010) (0.5) (3.5) (0.0004) (0.0) (3.6)

500 0.0041 5.0 0.3 0.0099 4.3 10 0.0048 5.0 8.7

(0.0002) (0.0) (0.6) (0.0007) (0.5) (3.1) (0.0006) (0.0) (3.5)

120 300 0.0023 5.0 0.2 0.0076 4.6 8.8 0.0027 5.0 7.4

(0.0004) (0.0) (0.4) (0.0007) (0.5) (2.6) (0.0004) (0.0) (4.2)

500 0.0021 5.0 0.6 0.0074 4.3 9.0 0.0025 5.0 8.9

(0.0002) (0.0) (0.8) (0.0009) (0.5) (2.7) (0.0003) (0.0) (5.4)

than that of parametric linear beta regression with SCAD. Group SCAD also has a compa-
rable TP with boosted beta regression, but it has a much smaller FP than that of boost beta
regression, which suggests that boosted beta regression tends to identify more covariates
than the true number of significant covariates, particularly when the covariate sparsity ratio
is high. Moreover, the MSE decreases as the sample size (n) or precision (φ) increases. The
TP becomes closer to the true number of nonzero functions as the sample size (n) or precision
(φ) increases, and the FP decreases as the sample size (n) or precision (φ) increases. The
group SCAD and boosted beta regression perform better than the parametric linear model
with SCAD in all of the experiments, which illustrates the importance of taking the nonlinear
structure into account. Finally, the proposed method can work well with both independent
and dependent covariates.
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5 Application to body fat data

We use the body fat data set inWeisberg (1985) to illustrate the utility of the proposedmethod
in nonparametric component selection, which has been analyzed by Hoeting et al. (1999),
Leng et al. (2010) and Zhao et al. (2014). The response variable (y) is the percentage of body
fat, which is proportional data restricted in the interval (0, 1). Figure 1 shows the histogram
of the percentage of body fat. There are 13 covariates: x1, age (years); x2, weight (pounds);
x3, height (inches); x4, neck circumference (cm); x5, chest circumference (cm); x6, abdomen
circumference (cm); x7, hip circumference (cm); x8, thigh circumference (cm); x9, knee
circumference (cm); x10, ankle circumference (cm); x11, extended biceps circumference
(cm); x12, forearm circumference (cm); and x13, wrist circumference (cm). The body fat
data set has 253 observations. After excluding outliers, 248 observations are retained in the
following analysis.We are interested in finding the covariates that are related to the percentage
of body fat and measuring their relationship. To evaluate the performance of our proposed
method with application to body fat data, we use the proposed nonparametric additive beta
regression with group SCAD (group SCAD), boosted beta regression (boost) and parametric
linear beta regressionwith SCAD (pSCAD) tomodel the relationship between the percentage
of body fat and the 13 covariates.

To evaluate the performance of the methods, we use cross-validation to calculate the
prediction mean square errors (PEs) and estimate the standard deviation of the PEs. We
randomly split the data set into a training data set and a testing data set with size 2:1. We fit
themodels using the training data set and calculate the PEs using the testing data set. Based on
200 replications, the PEs are 0.0020 (group SCAD), 0.0026 (pSCAD), and 0.0020 (boost),
and their corresponding standard deviations are 0.0004, 0.0004 and 0.0004, respectively.
Nonparametric additive beta regression with group SCAD and boosted beta regression have
better performance than linear regression with SCAD.

Table 3 lists the covariates selected by pSCAD, boost and group SCAD, indicated by
check signs based on the entire data set. Nonparametric additive beta regression with group
SCAD selects 7 covariates, linear regression with SCAD selects 5 covariates, and boosted
beta regression selects 10 covariates. Five covariates (x1, x3, x6, x8, and x13) are selected by all
threemethods. It is not surprising that the boosted beta regression identifies the largest number
of covariates. The boosted beta regression selects far more covariates than the proposed
method, but this does not lead to better prediction performance. Therefore, in this example,
the proposed nonparametric additive beta regression with group SCAD provides a more
appropriate list of covariates, which can serve better for further investigations. Figure 2
shows plots of the estimated additive components obtained by nonparametric additive beta
regression with the group SCAD. All of them are nonlinear, confirming the need for taking
nonlinearity into account for analyzing the body fat data.

6 Discussion

Fractional or proportional data are commonly encountered in many areas.When the response
data are fractional or proportional data, linear regression is no longer appropriate. An
appealing approach is beta regression proposed by Ferrari and Cribari-Neto (2004). In beta
regression, the response variable is assumed to follow a beta distribution in the interval (0, 1).
However, the classical beta regression assumes that the relationship between the proportional
response and covariates is linear,whichmaymake themodel setting be too restrictive andmis-
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Fig. 1 Histogram of the percentage of body fat

Table 3 Analysis results for the
real data

Covariates pSCAD Boost Group SCAD

x1
√ √ √

x2 0 0
√

x3
√ √ √

x4 0
√

0

x5 0 0 0

x6
√ √ √

x7 0
√

0

x8
√ √ √

x9 0 0 0

x10 0
√ √

x11 0
√

0

x12 0
√

0

x13
√ √ √

leading when the relationship between the covariates and transformed response is not linear.
In addition, high-dimensional data have become increasingly popular and received consid-
erable attention in diverse fields of scientific research. With these observations, developing
a statistical method to model the nonlinear relationship between the proportional response
and covariates and its variable selection procedure is of high interest.

In this paper, we extend the parametric linear beta regression to the nonparametric addi-
tive beta regression model together with a variable selection procedure. This implies that
only a small subset of available predictor variables is included in the final model. Variable
selection is of high practical interest in applications. Note that although the boosted beta
regression proposed by Schmid et al. (2013) can conduct variable selection, its theoretical
properties, particularly the variable selection consistency, are still unknown, which need to be
further explored. Under some mild conditions, the penalized estimators are shown to possess
estimation and selection consistencies. The results of simulations indicate that our proposed
method can simultaneously select out zero components and estimate nonzero components
efficiently. Applications using real data sets were presented and discussed. Note that in this
work, although we assume that the precision parameter φ is fixed in the simulation and esti-
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Fig. 2 The estimated additive components obtained with the group SCAD

mated by data in the real example, as with σ 2 = Var(ε) in traditional linear regression, it
would be interesting and straightforward to further extend the proposed model by regressing
the precision parameter φ on the covariates in our future work.

Acknowledgements This study has been supported by National Natural Science Foundation of China
(71471152) and Fundamental Research Funds for the Central Universities of China (20720181003,
20720171095).

Appendix

Appendix A: The proof of Theorem 1

The proofs of parts (i) and (iii) are the same with the proofs of parts (i) and (iii) of Theorem
1 of Huang et al. (2010), to save space, we only present the proof of part (ii) here. By the
definition of β̃n = (β̃�

n1, . . . , β̃
�
np)

�, we have

−n−1ln(β̃n) +
p∑

j=1

Pλ(||β̃nj ||2) ≤ −n−1ln(β) +
p∑

j=1

Pλ(||β j ||2).

Define F2 = { j : ||β j ||2 �= 0 or j : ||β̃nj ||2 �= 0}. As a result,

−n−1ln(β̃F2) +
∑

j∈F2

Pλ(||β̃nj ||2) ≤ −n−1ln(βF2) +
∑

j∈F2

Pλ(||β j ||2).
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Let β∗ be the maximum likelihood estimator of β. By the results of Horowitz and Mammen
(2004), we have β∗ − β = Op(m

1/2
n /n1/2 + m−2

n ), namely, β∗ is a consistent estimator of
β. Subsequently, employing the Taylor expansion as in Wang and Leng (2007), we have

n−1ln(β)=n−1ln(β
∗)+n−1l ′n(β∗)(β − β∗)+ 1

2
n−1(β − β∗)�{l ′′n (β∗)}(β−β∗)

{
1+op(1)

}
.

Note that l ′n(β∗) = 0 and n−1l
′′
n(β

∗) = −−1
{
1 + op(1)

}
. Since β∗ − β =

Op(m
1/2
n /n1/2 + m−2

n ), we have

(β̃F2 − β∗
F2

)�−1
F2

(β̃F2 − β∗
F2

) +
∑

j∈F2

Pλ(||β̃nj ||2)

≤ (βF2 − β∗
F2

)�−1
F2

(βF2 − β∗
F2

) +
∑

j∈F2

Pλ(||β j ||2).

Let Z be the design matrix generated by the basis functions of X , simple calculation
implies that −1 = φZ�WZ , where W = diag{w1, . . . wn} and wi = φ{ψ ′(μiφ) +
ψ ′((1 − μi )φ)}{g′(μi )}−2 (Ferrari and Cribari-Neto 2004). Since φW is positive definite,
thus we have (β̃ − β∗)�φZ�WZ(β̃−β∗) = (β̃ − β∗)�[(φW )1/2Z ]�[(φW )1/2Z ](β̃−β∗).
Define (φW )1/2Z as Z∗ and Z∗β∗ = Y ∗, we then have (β̃ − β∗)�−1(β̃ − β∗) =
(Z∗β̃ − Y ∗)�(Z∗β̃ − Y ∗), which immediately leads to

(Z∗
F2

β̃F2 − Y ∗
F2

)�(Z∗
F2

β̃F2 − Y ∗
F2

) − (Z∗
F2

βF2 − Y ∗
F2

)�(Z∗
F2

βF2 − Y ∗
F2

)

≤
∑

j∈F2

Pλ(||β j ||2) −
∑

j∈F2

Pλ(||β̃nj ||2). (A.1)

We then consider the two parts in (A.1) separately. Let ηn = Y ∗
F2

− Z∗
F2

βF2 , and vn =
Z∗
F2

(β̃F2−βF2).WriteY ∗
F2

−Z∗
F2

β̃F2 = Y ∗
F2

−Z∗
F2

βF2−Z∗
F2

(β̃F2−βF2) = ηn−Z∗
F2

(β̃F2−
βF2). We have ||Y ∗

F2
− Z∗

F2
β̃F2 ||22 = ||Z∗

F2
(β̃F2 −βF2)||22 − 2η�

n Z∗
F2

(β̃F2 −βF2)+ η�
n η =

||vn ||22 −2η�
n vn +η�

n ηn . As a result, we can rewrite the left term of (A.1) as ||vn ||22 −2η�
n vn .

We next consider the right term of (A.1), employing the Taylor’s expansion and Cauchy-
Schwarz inequality, we have

∣∣∣∣∣∣

∑

j∈F2

Pλ(||β̃nj ||2) −
∑

j∈F2

Pλ(||β j ||2)
∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

j∈F2

[Pλ(||β̃nj ||2) − Pλ(||β j ||2)]
∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

j∈F2

P ′
λ

(||β j ||2
) (

||β̃nj ||2 − ||β j ||2
)
∣∣∣∣∣∣

{
1 + op(1)

}

≤ max
{
P ′

λ

(||β j ||2
)}

∣∣∣∣∣∣

∑

j∈F2

[(
||β̃nj ||2 − ||β j ||2

)]
∣∣∣∣∣∣

≤ max
{
P ′

λ

(||β j ||2
)}√|F2|||β̃F2 − βF2 ||2,

where |F2| is the number of elements of F2.
Then, by (A.1), we have

(
||vn ||22 − 2η�

n vn

)
≤ max{P ′

λ(||β j ||2)}
√|F2|||β̃F2 − βF2 ||2.
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Let η∗
n be the projection of ηn to the span of Z∗

F2
, that is, η∗

n = Z∗
F2

(Z∗�
F2

Z∗
F2

)−1Z∗�
F2

ηn . By
the Cauchy-Schwarz inequality,

2
∣∣∣η�

n vn

∣∣∣ ≤ 2||η∗
n ||2||vn ||2 ≤ 2||η∗

n ||22 + 1

2
||vn ||22.

As a result, we have

||vn ||22 ≤ 2η�
n vn + max{P ′

λ(||β j ||2)}
√|F2|||β̃F2 − βF2 ||2

≤ 2||η∗
n ||22 + 1

2
||vn ||22 + max{P ′

λ(||β j ||2)}
√|F2|||β̃F2 − βF2 ||2.

Subsequently,

||vn ||22 ≤ 4||η∗
n ||22 + 2max{P ′

λ(||β j ||2)}
√|F2|||β̃F2 − βF2 ||2.

Let cn∗ be the smallest eigenvalues of Z∗�
F2

Z∗
F2

/n. By the results of Huang et al. (2010), we

have cn∗ = Op(m−1
n ). Moreover, since ||vn ||22 ≥ ncn∗||βF2 − β̃F2 ||22 and 2ab ≤ a2 + b2,

we have

ncn∗||βF2 − β̃F2 ||22 ≤ 4||η∗
n ||22

+
(
2max{P ′

λ(||β j ||2)}√|F2|
)2

2ncn∗
+ 1

2
ncn∗||βF2 − β̃F2 ||22.

It follows that

||βF2 − β̃F2 ||22 ≤ 8||η∗
n ||22

ncn∗
+ 4

(
max {P ′

λ(||β j ||2)}
)2|F2|

n2c2n∗
.

Note that β∗
nj − β j = Op(m

1/2
n /n1/2 +m−2

n ), which is the convergence rate of conventional

nonparametric estimators (Horowitz and Mammen 2004). If we choose mn = O(n1/(2d+1)),
then β∗

nj −β j = Op(m−d
n ), and by condition (C4), it follows that ||η∗

n ||22 = Op(n|F2|m−2d
n ).

By the result of part (i), we have |F̃T | ≤ M1|FT | = M1q , then |F2| = |F̃T
⋃FT | ≤

M1|FT | + |FT |, thus we have

||βF2 − β̃F2 ||22 ≤ 8||η∗
n ||22

ncn∗
+ 4

(
max

{
P ′

λ

(||β j ||2
)})2|F2|

n2c2n∗

= Op

( |F2|m−2d
n

cn∗

)
+ Op

(
4

(
max

{
P ′

λ

(||β j ||2
)})2|F2|

n2c2n∗

)

= Op

(
m−2d+1

n

)
+ Op

(
4

(
max

{
P ′

λ

(||β j ||2
)})2

m2
n

n2

)
, (A.2)

which completes the entire proof.

Appendix B: The proof of Theorem 2

By the proof of Theorem 1, the objective function can be approximated as

(Z∗β̃n − Y ∗)�(Z∗β̃n − Y ∗) +
p∑

j=1

Pλ(||β̃nj ||2).
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Moreover, employing Taylor’s expansion, we know

p∑

j=1

Pλ(||β̃nj ||2) ≈
p∑

j=1

{
Pλ(||β j ||2) + P ′

λ(||β j ||2)[||β̃nj ||2 − ||β j ||2]
}

=
p∑

j=1

P ′
λ(||β j ||2)(||β̃nj ||2) +

p∑

j=1

[
Pλ(||β j ||2) − P ′

λ(||β j ||2)||β j ||2
]
.

Consequently, the objective function is equal to

(Z∗β̃n − Y ∗)�(Z∗β̃n − Y ∗) +
p∑

j=1

P ′
λ(||β j ||2)(||β̃nj ||2).

For the convenience of notation, we define P ′
λ(||β̃ j ||2) = λ j and CFT = n−1Z∗�

FT
Z∗
FT

. Let
ρn1 and ρn2 be the smallest and largest eigenvalues of CFT , respectively.

By the KKT, a necessary and sufficient condition for β̃n is
⎧
⎨

⎩
2Z∗�

j (Y ∗ − Z∗β̃n) = λ j
β̃nj

||β̃nj || , ||βnj ||2 �= 0, j ≥ 1,

2||Z∗�
j (Y ∗ − Z∗β̃n)||2 ≤ λ j , ||β̃nj || = 0, j ≥ 1.

Let un = (
λ j β̃nj

2||β̃nj || , j ∈ FT )� and β̃FT = (Z∗T
FT

Z∗
FT

)−1(Z∗T
FT

Y ∗ − un). If β̃FT =0βFT ,

then the two equations above hold for β̃n ≡ (β̃�
FT

, 0�)�. Thus, since Z∗β̃n = Z∗
FT

β̃FT for

this β̃n and {Z∗
j , j ∈ FT } are linearly independent,

β̃n=0β if

{
β̃FT =0βFT ,

||Z∗�
j (Y ∗ − Z∗

FT
β̃FT )||2 ≤ λ j/2, ∀ j /∈ FT .

This is true if

β̃n=0β if

{
||β j ||2 − ||β̃nj ||2 ≤ ||β j ||2, ∀ j ∈ FT ,

||Z∗�
j (Y ∗ − Z∗

FT
β̃FT )||2 ≤ λ j/2, ∀ j /∈ FT .

Therefore,

P
(
β̃n �=0β

)
≤ P

(
||β̃nj − β j ||2 ≥ ||β j ||2, ∃ j ∈ FT

)

+P
(
||Z∗�

j

(
Y ∗ − Z∗

FT
β̃FT

)
||2 > λ j/2, ∃ j /∈ FT

)
.

Let δn = Y ∗ − Z∗
FT

βFT , and Hn = In − Z∗
FT

(Z∗�
FT

Z∗
FT

)−1Z∗�
FT

. By the definition of β̃FT ,

β̃FT − βFT = n−1C−1
FT

(Z∗�
FT

δn − un) and Y ∗ − Z∗
FT

β̃FT = Hnδn + Z∗
FT

C−1
FT

un/n. Based
on the above two equations, under condition (C5) Lemma 5 of Huang et al. (2010) shows
that

P(||β̃nj − β j ||2 ≥ ||β j ||2, ∃ j ∈ FT ) → 0

and Lemma 6 of Huang et al. (2010) shows that

P
(
||Z∗�

j (Y ∗ − Z∗
FT

β̃FT )||2 > λ j/2, ∃ j /∈ FT

)
→ 0.

These two equations lead to the Theorem 2.
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