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ABSTRACT
In the application of high-dimensional data classification, several
attempts have beenmade to achieve variable selection by replacing
the �2-penalty with other penalties for the support vector machine
(SVM). However, these high-dimensional SVM methods usually do
not take into account the special structure among covariates (fea-
tures). In this article, we consider a classification problem, where the
covariates are ordered in some meaningful way, and the number of
covariates p can be much larger than the sample size n. We propose
a structured sparse SVM to tackle this type of problems, which com-
bines the non-convex penalty and cubic spline estimation procedure
(i.e. penalizing second-order derivatives of the coefficients) to the
SVM. From a theoretical point of view, the proposedmethod satisfies
the local oracle property. Simulations show that the method works
effectively both in feature selection and classification accuracy. A real
application is conducted to illustrate the benefits of the method.
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1. Introduction

Classification is one of the most important research fields in statistics and machine learn-
ing, and it is also a common practical problem. The support vector machine (SVM)[19]
is a powerful classification tool with high accuracy and great flexibility. In this article, we
will focus on a classification with n cases having class labels {yi ∈ {1,−1}; i = 1, . . . n} and
features {xij; i = 1, 2, . . . , n, j = 1, 2, . . . , p}. The SVMhas an equivalent formulation as the
�2 penalized hinge loss [11]:

min
(β0,β)

1
n

n∑
i=1

�
{
yi(β0 + x�

i β)
}+ λ

2
‖β‖2, (1)

where the loss �(t) = [1 − t]+ is called hinge loss, and ‖ · ‖ is the �2-norm. λ is the tuning
parameter, which is used to control the tradeoff between loss and penalty.

In the application of high-dimensional data classification, several attempts have been
made to achieve variable selection by replacing the �2-penalty with other penalties for
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Figure 1. Protein mass spectroscopy data: average profiles from control (–) and ovarian cancer
patients (–).

the SVM, such as �1-SVM [1,28], �0-SVM and �∞-SVM [10], �p-SVM [4], SCAD-SVM
[25,27], Hybrid Huberized SVM [20,21], and MCP-SVM [27]. Since the hinge loss does
not have the first derivative, it causes some difficulties in the calculation. [6,15] considered
square hinge loss in the SVM; [17,20–22] suggested using the Huberized hinge loss in the
SVM. [17] point out that the Huberized regularized model paths are both less affected by
the outlier than the non-Huberized squared loss.

This paper concerns a class of structured sparse classification problems with ordering
features, i.e. xj that can be ordered as x1, x2, . . . , xp in some sense. A motivating example
comes from protein mass spectroscopy. For each blood serum sample i, we observed the
intensity xij for many time-of-flight values tj. Time of flight is related to the mass over
charge ratio m/z of the constituent proteins in the blood. Figure 1 shows an example that
protein mass spectroscopy taken from [16]. We plot intensity xij on the vertical Y -axis
against m/z on the horizontal x-axis. The features are ordered in a meaningful way, i.e. xij
are ordered bym/z, which may lead to a high correlation among closely located variables.
The SVM methods mentioned above for processing high-dimensional data classification,
do not consider the structure in which the variables are arranged in order. Our goal is to
predict the label from the ordered features, especially for p � n.

Besides the above example, there are alsomany data like this, such as the gene expression
data in microarray studies, single nucleotide polymorphisms (SNPs) data in genome-wide
association studies (GWAS), graph and image data[9]. Those special structures among
variables may lead to successive coefficients vary slowly. Fused lasso [18] encourages flat-
ness of the coefficients by penalizing the �1-norm of coefficients’ successive differences.
However, it may not perform well when the features vary smoothly, rather than being like
a step function. To capture the smooth features in a group, smooth-lasso [12] replaces the
�1-penalty of the difference of the adjacent coefficients in the fused lasso by the �2-penalty.
Recently, [9] proposed the spline-lasso and spline-MCP, in which they imposed an �2-
penalty on the discrete version of the second derivatives of coefficients. However, these
methods mentioned above are mainly used in the regression.

To the best of our knowledge, the present article is the first to develop theory and
methodology for SVM to incorporate the ordered structure among predictors. This study
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may advance from the existing ones along the following aspects. First, the structured sparse
SVM can achieve variable selection as well as capture the ordered structure of features. The
subsequent numerical analysis proves that ignoring this data structure has an impact on
the accuracy of the classification and the variable selection. Second, we can theoretically
prove that our method has local oracle properties. Even when the number of covariates
grows exponentially with the sample size, the local oracle property still holds for the struc-
tured sparse SVM. Finally, the algorithm and asymptotic properties are established based
on the general form, and we can advocate many kinds of loss functions in the formulation
of structured sparse SVM, such as Huberized hinge loss and squared hinge loss.

The rest of the article is organized as follows. In Section 2, we describe themodel, an effi-
cient algorithm, and local oracle properties for structured sparse SVM. Simulation results
and an application of the proposed method to a protein mass spectroscopy dataset are pre-
sented in Sections 3 and 4. Discussions of the proposed method and results are given in
Section 5. Proofs for the oracle properties of structured sparse SVM are provided in the
Appendix.

2. Structured sparse support vector machine

2.1. Methodology

In this paper, we allow the number of covariates p to increase with the sample size n. It is
even possible that p is much larger than n. We assume that the true parameter is sparse,
and the features are ordered in some meaningful way. Thus, we need to get an estimator
that enjoys the structured sparse property.

The structured sparse SVM is formulated in terms of a loss function that is regularized
by penalty terms. Our proposed minimization objective function is

min
(β0,β)

1
n

n∑
i=1

�
{
yi(β0 + x�

i β)
}+

p∑
j=1

pλ1

(|βj|
)+ λ2

p−1∑
j=2

(
�

(2)
j β

)2. (2)

In (2), the first part is a convex loss function.We can advocatemany kinds of loss functions.
Huberized hinge loss,

�δ(t) =
⎧⎨
⎩
0, t > 1,
(1 − t)2/(2δ), 1 − δ < t ≤ 1,
1 − t − δ/2, t ≤ 1 − δ,

is adopted in this paper. We fix the pre-specified constant δ = 2 following by [21]. The
results with other losses are provided in the supplemental materials.

The second part is used to achieve variable selection. We consider the penalized SVM
with a general class of non-convex penalties, such as the smoothly clipped absolute devi-
ation (SCAD) penalty [7] and the minimax concave penalty (MCP) [24]. The SCAD
penalty is defined by pλ(x) = λ

∫ |x|
0 min{1, (a − t/λ)+/(a − 1)}dt for some a>2. The

MCP is defined by λ
∫ |x|
0 {1 − t/(aλ)}+dt for some a>1. The experiments with different

a values are presented in supplemental materials. We find our results to be insensitive to
these choices, and for brevity, we fixed a = 3.7 for SCAD penalty and a = 3 for MCP as
suggested in the literature [3,7,27,29].
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The third part mimics the cubic spline to encourage the smoothness of coefficients.
As the coefficient of the variables might vary smoothly, we encourage the smoothness
of coefficients by penalizing the �2 norm of the discrete version of the second-order
derivatives of the coefficients. Denote the first- and second-order difference (or discrete
versions of derivatives) of the coefficients by �jβ =: (βj+1 − βj) and �

(2)
j β = �jβ −

�j−1β = βj+1 − 2βj + βj−1. Then the �2 norm of the discrete version of the second-order
derivatives of the coefficients is

∑p−1
j=2 (�

(2)
j β)2. The estimator by minimizing (2) enjoys

structured sparse property.

Remark 2.1: The idea of the third part in (2) is similar to spline-lasso [9], which is used
in the regression. The computation of spline-lasso is converted to lasso through a certain
transformation. However, the conversion is no longer applicable when we solve the SVM
problem. The computation is more complicated for the SVMproblem than regression. The
details of the algorithm are shown in Section 2.2.

2.2. Algorithm

Then we give the algorithm to solve this problem. Without loss of generality, we assume
that the input data are standardized:

∑n
i=1 xij/n = 0,

∑n
i=1 x

2
ij/n = 1, j = 1, 2, . . . , p. We

use the generalized coordinate descent (GCD) algorithm [22] to calculate the structured
sparse SVM problem.

When using the GCD algorithm, the loss function �(·) should satisfy the following
condition

�(t + a) ≤ �(a) + �′(a)t + M
2
t2 ∀ a, t, (3)

where M is a constant greater than 0. The corresponding M value is 2/δ for Huberized
hinge loss. It can be proved that the common loss functions such as Huberized hinge loss,
logistic loss, and square hinge loss satisfy the above condition. Although the hinge loss, the
loss for the standard SVM, does not satisfy (3), [21] showed that Huberized hinge function
with the parameter δ = 0.01 is nearly identical to the hinge loss.

Let D be a (p − 2) × p matrix with Dii = Di,i+2 = 1, Di,i+1 = −2, and Dij = 0 other-
wise. Given current estimate {β̃0, β̃}. Define the current margin ri = yi(β̃0 + x�

i β̃). The
coordinate descent algorithm cyclically minimizes

F(βj|β̃0, β̃) = 1
n

n∑
i=1

�
{
ri + yixij(βj − β̃j)

}+ pλ1

(|βj|
)

+ λ2(D�D)jjβ
2
j + 2λ2

n∑
l=1,i
=j

(D�D)ljβ̃lβj (4)

with respect to βj. According to local linear approximation (LLA) [29], we have pλ1(|βj|) ≈
pλ1(|β̃j|) + p′

λ1
(|β̃j|)(|βj| − |β̃j|), for βj ≈ β̃j. As pointed out by a referee, CCCP (con-

strained concave–convex procedure) algorithm is also an efficient algorithm for solving
this problem, which is worth investigating as future work. When �(·) satisfies (3), we can
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get F(βj|β̃0, β̃) ≤ F̂(βj|β̃0, β̃), where

F̂(βj|β̃0, β̃) = 1
n

n∑
i=1

�(ri) + 1
n

n∑
i=1

�′(ri)yixij(βj − β̃j) + M
2

(βj − β̃j)
2

+ p′
λ1

(|β̃j|)|βj| + λ2(D�D)jjβ
2
j + 2λ2

p∑
l=1,l 
=j

(D�D)ljβ̃lβj. (5)

Since F̂ is a quadratic majorization function of F, we can get the new update by
minimizing F̂:

β̂new
j = argmin

βj

F̂(βj|β̃0, β̃) = S(z, p′
λ1

(|β̃j|))
M + 2λ2(D�D)jj

, (6)

where S(z, t) = (|z| − t)+sign(z), z=Mβ̃j − 1
n
∑n

i=1 �′(ri)yixij − 2λ2
∑n

l=1,i
=j (D
�D)ljβ̃l.

Likewise, we can update the intercept by minimizing

F̂(β0|β̃0, β̃) = 1
n

n∑
i=1

�(ri) + 1
n

n∑
i=1

�′(ri)yi(β0 − β̃0) + M
2

(β0 − β̃0)
2. (7)

Then the intercept is updated by

β̂new
0 = argmin

β0

Q(β0|β̃0, β̃) = β̃0 −
∑n

i=1 �′(ri)yi
Mn

. (8)

Then we can iterate (4)–(8) until convergence.

Remark 2.2: In this paper, we specify the initial value by L1 penalized SVM following by
[27], and it leads to a satisfactory result.

Remark 2.3: The above algorithm satisfies the majorization–minimization (MM) princi-
ple [5,13,14], and the MM principle ensures the descent property of the GCD algorithm.
The proof is similar to [21,22] and we omit here.

2.3. Asymptotic properties

In this subsection, we establish the theory of the local oracle property for the structured
sparse SVM, namely the oracle estimator is one of the local minimizers of (2).

Since β0 does not affect variable selection, we make β0 = 0 for the convenience of
expression without loss of generality in this section. Let β∗ = (β∗

1 ,β
∗
2 , . . . ,β

∗
p )� denote

the true parameter value, which is defined as the minimizer of the population loss: β∗ =
argminβ L(β) = argminβ E{�(yx�β)}.

We use pn in this section to denote the number of features. Let A = {j : β∗
j 
=

0, 1 ≤ j ≤ pn} be the index set of the non-zero coefficients, and Ac = {j : β∗
j = 0, 1 ≤

j ≤ pn} be the index set of the zero coefficients. qn = |A| is the cardinality of
set A. DA is a submatrix formed by D removing the column corresponding to the
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element in the Ac. βAc = (βj)j∈Ac is a vector composed of the components of β

corresponding to the elements in Ac. Then the oracle estimate β̂ is defined as β̂ =
argminβAc=0{ 1n

∑n
i=1 �(yix�

iAβA) + λ2nβ
�
AD

�
ADAβA}.

Theorem 2.1: Assume that the conditions 1–5 listed in the Appendix hold. Let Bn(λ1n, λ2n)
be the set of local minimizers of the objective function

Qn(β) = Ln(β) +
p∑

j=1
pλ1n(|βj|) + λ2nβ

�D�Dβ

with regularization parameter λ1n, λ2n. The oracle estimator β̂ = (β̂
�
A, 0�)� satisfies

Pr
{
β̂ ∈ Bn(λ1n, λ2n)

} → 1

as n → ∞, if qnn−1/2 log pn log n = o(λ1n), λ2nqn1/2n−1/2 = o(λ1n), and λ1n =
o(n−(1−c3)/2).

From Theorem 2.1, we can see that if we take λ1n = n−1/2+τ for some c1 < τ < c3/2,
then the oracle property holds even for p = o{exp(n(τ−c1)/2)}. Thus, even when the num-
ber of covariates grows exponentially with the sample size, the local oracle property still
holds for the structured sparse SVM.

3. Simulations

In this section, numerical experiments are conducted to study the performance of our
proposed method. We use Spline-penalty-HSVM, where penalty includes SCAD and
MCP, to represent our proposed method (i.e. Spline-SCAD-HSVM and Spline-MCP-
HSVM). To investigate the performance, we compared performances of the proposed
methodwith other alternativeswithout considering structured sparsity: SCAD-HSVMand
MCP-HSVM.

Three data generation processes are considered in this paper. We set n = 100 and
p = 1000. In Example 3.1, the non-zero coefficients of the variables are completely smooth
by position. Partial non-zero coefficients are smooth in Example 3.2. For Example 3.3, the
non-zero coefficients are not smooth. Within each example, our simulated data consist of
a training set and a testing set. Models are fitted on training data only, and the testing set
with sample size 500 is used to show the predictions of each method. The optimal reg-
ularization parameters λ1 and λ2 are selected on a 15-by-20 meshgrid through a 5-fold
cross validation. Possible values of λ2 are from [0.1, 0.2, . . . , 1.9, 2]. For each fixed λ2, we
compute the solutions for a fine grid of λ1s. Following [21], we start with λ1(max) which is
the smallest λ1 to set all βj to be zero, and set λ1(min) = 0.01λ1(max). Between λ1(min) and
λ1(max), 15 points are placed uniformly in the log-scale. Then we select the optimal regu-
larization parameters that achieve the maximum of the classification accuracy rate. Here
are the details of the three scenarios.

Example 3.1: Consider x ∼ N(0,�)with� = (0.5|i−j|)p×p,βj = j/40 for j = 1, 2, . . . , 20;
βj = 1 − j/40 for j = 21, . . . , 40; βj = − sin(π j/40) for j = 81, . . . , 120; βj = 0.5
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(1 − cos(π j/20)), for j = 161, . . . , 200; and βj = 0 for the otherwise. Pr(y = −1) =
1/(1 + exp(−x�β)), and Pr(y = 1) = 1/(1 + exp(x�β)). The Bayes rule is sgn(x�β)

with Bayes error 5.2%.

Example 3.2: The setting of x is the same as in Example 3.1. βj takes the same value
as in Example 1 for j = 1, 2, . . . , 120; βj ∼ Uniform(−0.5, 0.5), for j = 160, . . . , 200; and
βj = 0 for the otherwise. Pr(y = 1|x) = 	(x�β), where 	(·) is the distribution function
of standard normal distribution. The Bayes rule is sgn(x�β) with Bayes error 9.1%.

Example 3.3: The generations of x and y are the same as in Example 3.1. βj ∼
Uniform(0, 1), for j = 1, 2, . . . , 40; and βj = 0 for the otherwise. The Bayes rule is
sgn(x�β) with Bayes error 8.3%.

The performance of different methods will be examined in two aspects: classification
prediction and feature selection. In the evaluation of classification prediction, the classi-
fication accuracy rate (ACC), area under curve (AUC), true positive rate (TPR) and false
positive rate (FPR) are adopted. As for feature selection, we compare TPR and FPR for
different methods.

The results of the simulations are shown inTable 1.When the features vary smoothly, the
SVM model with the spline penalty is significantly better in classification prediction and
variable selection than the SVM model without the spline penalty (Example 3.1 and 3.2).
The proposed method performs better, especially when non-zero coefficients of the vari-
ables are completely smooth by position in terms of classification prediction. In Figure 2,
we present the estimation results for the correlated features in Example 3.1, by four dif-
ferent methods. From the figure, we can conclude that both the Spline-SCAD-HSVM
and Spline-MCP-HSVM give a good estimate of the coefficients, while SCAD-HSVM and
MCP-HSVM do not clean out the noisy signals very well. The improvement is not sur-
prising since Spline-SCAD-HSVM and Spline-MCP-HSVM can capture the smoothing
changes in coefficients. When the non-zero coefficients are not smooth, which means
structural information described in this paper does not exist, the performances of both
methods are similar (Example 3.3). This observation indicates that the proposed models
are also applicable even when the features do not vary smoothly.

4. Real data analysis

In this section, we apply our methods to a dataset of Ovarian Dataset 8-7-02. The dataset
is provided by the US Food and Drug Administration (FDA) and the National Cancer
Institute (NCI), which can be downloaded and accessed at http://home.ccr.cancer.gov/.
The data were collected as serum samples from normal and cancer patients, and the mass
spectrometry technique was combined with the WCX2 protein chip and SELDI-TOF. The
sample set included 91 controls and 162 ovarian cancers, which were not randomized.
Each mass spectrometer sample contains a 15154-dimensional mass-to-charge ratio (m/z)
/intensity characteristic. As mentioned in Section 1, the features are ordered in a meaning-
fulway. Following the original researchers, we ignoredm/z-sites below100,where chemical
artifacts can occur [16].

http://home.ccr.cancer.gov/
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Table 1. The simulation results obtained from 100 Monte Carlo repetitions (with standard errors in
parentheses).

Classification prediction Variable selection

Method ACC AUC TPR FPR TPR FPR

Example 3.1
SCAD-HSVM 0.782 (0.021) 0.874 (0.018) 0.769 (0.046) 0.205 (0.040) 0.732 (0.038) 0.309 (0.029)
MCP-HSVM 0.775 (0.025) 0.867 ( 0.024) 0.789 (0.031) 0.237 (0.047) 0.761 (0.028) 0.304 (0.036)
Spline-SCAD-HSVM 0.922 (0.022) 0.983 (0.011) 0.911 (0.034) 0.067 (0.030) 0.874 (0.019) 0.254 (0.021)
Spline-MCP-HSVM 0.932 (0.010) 0.987 (0.010) 0.920 (0.033) 0.055 (0.028) 0.868 (0.024) 0.143 (0.019)

Example 3.2
SCAD-HSVM 0.756 (0.011) 0.845 (0.008) 0.723 (0.010) 0.258 (0.008) 0.611 (0.019) 0.253 (0.008)
MCP-HSVM 0.738 (0.015) 0.834 (0.007) 0.715 (0.009) 0.263 (0.008) 0.606 (0.020) 0.265 (0.009)
Spline-SCAD-HSVM 0.798 (0.013) 0.853 (0.011) 0.729 (0.009) 0.259 (0.008) 0.799 (0.019) 0.223 (0.010)
Spline-MCP-HSVM 0.804 (0.012) 0.854 (0.012) 0.731 (0.015) 0.257 (0.008) 0.799 (0.020) 0.225 (0.011)

Example 3.3
SCAD-HSVM 0.788 (0.009) 0.880 (0.012) 0.799 (0.010) 0.244 (0.002) 0.782 (0.018) 0.215 (0.005)
MCP-HSVM 0.788 (0.009) 0.880 (0.012) 0.799 (0.010) 0.244 (0.002) 0.781 (0.020) 0.215 (0.005)
Spline-SCAD-HSVM 0.801 (0.006) 0.878 (0.011) 0.791 (0.010) 0.290 (0.003) 0.790 (0.019) 0.229 (0.011)
Spline-MCP-HSVM 0.808 (0.006) 0.878 (0.011) 0.795 (0.010) 0.281 (0.003) 0.790 (0.015) 0.229 (0.012)

Figure 2. The average estimation results for the correlated features in Example 1 of 100 Monte Carlo
repetitions, by four different methods: SCAD-HSVM, MCP-HSVM, Spline-SCAD-HSVM and Spline-MCP-
HSVM. The solid line curve is the true β , and the scatter dot represents the estimation for each method.

We randomly choose 173 samples from data as the training set, and the remaining 80
samples are used as the testing set. Four methods with Huberized hinge loss, i.e. SCAD-
HSVM, MCP-HSVM, Spline-SCAD-HSVM, and Spline-MCP-HSVM, are fitted using the
training set. Additional results with other losses are provided in the supplemental mate-
rials. Tuning parameters are chosen by 5-fold cross validation base on the training set.
We select the optimal regularization parameters that achieve the maximum of the classi-
fication accuracy rate among grid points using two-dimensional grid search. We run the
sample-splitting method 100 times, and the results are summarized in Table 2. We can see
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Table 2. Results of 100 random splits of the ovarian cancer dataset (with
standard errors in parentheses).

Method ACC AUC TPR FPR

SCAD-HSVM 0.919 (0.025) 0.968 (0.010) 0.930 (0.021) 0.061 (0.012)
MCP-HSVM 0.921 (0.026) 0.971 (0.008) 0.932 (0.022) 0.060 (0.015)
Spline-SCAD-HSVM 0.947 (0.018) 0.989 (0.004) 0.972 (0.009) 0.043 (0.011)
Spline-MCP-HSVM 0.947 (0.019) 0.992 (0.003) 0.975 (0.009) 0.041 (0.010)

Figure 3. The figure shows the number of selected proteins versus the selection frequency of four
different methods: (a) SCAD-HSVM, (b) MCP-HSVM, (c) Spline-SCAD-HSVM, and (d) Spline-MCP-HSVM.

that the performance of the Spline-SCAD-HSVM and Spline-MCP-HSVM is slightly bet-
ter than the SCAD-HSVM and MCP-HSVM. The ACC, AUC and TPR are slightly higher
when we consider the model that explicitly incorporates the special structures among the
features.

To complement the estimation and identification analysis, we also evaluate the stability
of analysis by computing the observed occurrence index (OOI). For each feature identi-
fied using the training data, we compute its probability of being identified out of the 100
resamplings; this probability has been referred to as the OOI. The median OOI values
of SCAD-HSVM,MCP-HSVM, Spline-SCAD-HSVM, and Spline-MCP-HSVM are 0.736,
0.739, 0.857, and 0.862, respectively. Figure 3 shows the number of selected proteins ver-
sus the selection frequency of four different methods out of the 100 random splits. We
can conclude that the OOI value of the model with the spline item is significantly higher,
which indicates that Spline-SCAD-HSVM and Spline-MCP-HSVM are more stable than
SCAD-HSVM and MCP-HSVM.
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5. Discussion

In this article, we consider a high-dimensional data classification problem, where the
features are ordered in some meaningful way. When the coefficients are sparse and
change smoothly, we propose a structured sparse SVM, which combines the non-convex
penalty and cubic spline estimation procedure (i.e. penalizing second-order derivatives
of the coefficients) to the SVM, and proved that it satisfies the local oracle property
under some conditions. The simulation and empirical results show that the proposed
method has a higher accuracy of classification and prediction compared with the existing
methods.

In the future, we want to work on more complex data. For example, when the high-
dimensional data variables have group structure information and the intra-group features
are ordered in some meaningful way. Moreover, our approach could also be extended to
the framework of semisupervised learning and multi-class classification.
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Appendices

Appendix 1. Regularity conditions

To facilitate our technical proofs, we impose the following regularity conditions.

Condition A.1: The loss function �(·) is convex and it has a first order continuous derivative.
There exist constants M1 and M2, such that |�′(t)| ≤ M1(|t| + 1), |∂(�′(t))| ≤ M2, ∀t, where ∂(·)
represents the subgradient.

Condition A.2: qn = O(nc1), 0 ≤ c1 < 1/2; λ2n‖Dβ∗‖ = O(n−c2), (1 − c1)/2 < c2 ≤ 1/2.

Condition A.3: The Hessian matrix H(βA) = E[∇2�(yx�
AβA)] satisfies conditions

0 < M3 < λmin{H(β∗
A)} ≤ λmax{H(β∗

A)} < M4 < ∞,

where xA is the matrix formed by x removing the column corresponding to the element in theAc.
where λmin and λmax denote the smallest and largest eigenvalue, respectively.

Condition A.4: There is a constantM5 > 0 such that λmax(n−1x�
AxA) ≤ M5. It is further assumed

that xij are sub-Gaussian random variables for 1 ≤ i ≤ n, j ∈ Ac.

Condition A.5 (Condition on the true model dimension): There exist positive constants c3 and
M6 such that 1 − c1 ≤ c3 ≤ 1 and n(1−c3)/2 minj∈A |β∗

j | ≥ M6.

Remark A.1: Condition 1 requires that the loss function be smooth and that the change is gentle,
which is satisfactory for some common SVM loss functions, such as Huberized hinge loss function
and square hinge loss function. Condition 2 states that the divergence rate of the number of non-
zero coefficients cannot be faster than n1/2, and the coefficient of the variable is slowly changing in
position, which supports our introduction of spline penalty. Under Conditions 3, theHessianmatrix
of the loss function is assumed to be positive definite, and its eigenvalues are uniformly bounded.
The condition on the largest eigenvalues of the design matrix, which is assumed in Condition 4, is
similar to that of [23,26,27]. Condition 5 simply states that the signals cannot decay too quickly.

Appendix 2. Some lemmas

The proof of Theorem 2.1 relies on the following lemmas.

Lemma A.1: Assume that Conditions 1–5 are satisfied. Then the oracle estimator satisfies ‖β̂A −
β∗
A‖ = Op(

√
qn/n).

Proof: Let αn = √
qn/n, andQn(βA) = 1

n
∑n

i=1 �(yix�
iAβA) + λ2nβ

�
AD�

ADAβA, we want to show
that for any given ε > 0, there exists a constant C> 0 such that

Pr
{

inf
‖u‖=C

Qn(β
∗
A + αnu) > Qn(β

∗
A)

}
≥ 1 − ε. (A.1)

This implies that there exists a local minimum in the ball {β∗
A + αnu : ‖u‖ ≤ C}with probability at

least 1 − ε. Hence, there exists a local minimizer such that ‖β̂A − β∗
A‖ = Op(αn).
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Let


n(u) = Qn(β
∗
A + αnu) − Qn(β

∗
A)

= 1
n

n∑
i=1

[
�
{
yix�

iA(β∗
A + αnu)

}− �(yix�
iAβ∗

A)
]

+ λ2n
{
(β∗

A + αnu)
�D�

ADA(β∗
A + αnu) − β�∗

A D�
ADAβ∗

A
}
.

By applying Taylor series expansion around β∗, we have


n(u) = 1
n

n∑
i=1

[
αn∇�{�(yix�

iAβ∗
A)
}
u + α2

n
2
u�∇2{�(yix�

iAβ̃A)
}
u
]

+ 2λ2nαnβ
∗�
A D�

ADAu + λ2nα
2
nu

�D�
ADAu

≥ αn

n

n∑
i=1

∇�{�(yix�
iAβ∗

A)
}
u + α2

nu�

2n

n∑
i=1

∇2{�(yix�
iAβ̃A)

}
u

+ 2λ2nαnβ
∗�
A D�

ADAu
∧= I1 + I2 + I3, (A.2)

where β̃A = β∗
A + αntu, 0< t< 1. By Conditions 1–3, we have

|I1| =
∣∣∣αn

n

n∑
i=1

∇�{�(yix�
iAβ∗

A)
}
u
∣∣∣ ≤ αn

∥∥∥ 1
n

n∑
i=1

∇�{�(yix�
iAβ∗

A)
}∥∥∥ ·

∥∥∥u∥∥∥
= αn · Op(

√
qn/n)‖u‖ = Op(α

2
n)‖u‖.

With Conditions 1 and 4, using Chebyshev inequality similarly as that in [8], we have when qn =
O(nc1), 0 ≤ c1 < 1/2

Pr
{∥∥∥∥∥ 1n

n∑
i=1

∇2{�(yix�
iAβ∗

A)
}− H(β∗

A)

∥∥∥∥∥ ≥ εq−1
n

}
≤ q2n

nε2
= o(1),

Thus ∥∥∥ 1
n

n∑
i=1

∇2{�(yix�
iAβ∗

A)
}− H(β∗

A)

∥∥∥ = op(q−1
n ),

Then

I2 = 1
2
α2
nu

�H(β∗
A)u{1 + op(1)}.

By choosing a sufficiently largeC, the second term I2 dominates the first term I1 uniformly in ‖u‖ =
C. By Cauchy–Schwarz inequality and Condition 2, we have

|I3| = |2λ2nαnβ
∗�
A D�

ADAu| ≤ 2λ2nαn‖DAβ∗
A‖‖DAu‖

= 2λ2nαn‖Dβ∗‖
√
u�D�

ADAu

≤ 2λ2nαn‖Dβ∗‖‖u‖
√

λmax(D�
ADA) = o(α2

n)‖u‖.
This is also dominated by the second term of (A2). Hence, by choosing a sufficiently large C, (A1)
holds. This completes the proof of the lemma. �
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Lemma A.2: Assume that Conditions 1–5 hold and that qnn−1/2 log pn log n = o(λ1n). Then

Pr

{
max
j∈Ac

∣∣ 1
n

n∑
i=1

yixij�′(yix�
iAβ∗

A)
∣∣ >

λ1n

2

}
→ 0,

as n → ∞.

Proof: Recall thatE[n−1∑n
i=1 yixij�

′(yix�
iAβ∗

A)] = 0, and the fact that maxi |xij| = Op(
√
log n) for

sub-Gaussian random variables. For some positive constans C, we have∣∣yixij�′(yix�
iAβ∗

A)
∣∣ ≤ M1|xij|(|x�

iAβ∗
A| + 1) ≤ M1|xij|(‖xiA‖‖β∗

A‖ + 1) ≤ Cqn log n.

By Lemma 14.11 of [2], we have

Pr

{∣∣ 1
n

n∑
i=1

yixij�′(yix�
iAβ∗

A)
∣∣ >

λ1n

2

}
≤ 2 exp

{
− nλ21n
8C2q2n log

2 n

}
.

Then

Pr

{
max
j∈Ac

∣∣ 1
n

n∑
i=1

yixij�′(yix�
iAβ∗

A)
∣∣ >

λ1n

2

}

= Pr

⎡
⎣⋃
j∈Ac

{∣∣ 1
n

n∑
i=1

yixij�′(yix�
iAβ∗

A)
∣∣ >

λ1n

2

}⎤⎦ ≤ 2pn exp
{
− nλ21n
8C2q2n log

2 n

}

= 2 exp
[
log pn

{
1 − nλ21n

8C2q2n log pn log
2 n

}]
→ 0

as n → ∞ by the fact that qnn−1/2 log pn log n = o(λ1n). �

Lemma A.3: Suppose that Conditions 1–5 hold, qnn−1/2 log pn log n = o(λ1n), λ2nqn1/2n−1/2 =
o(λ1n), and λ1n = o(n−(1−c3)/2). For j = 1, 2, . . . , p, denote

sj(β̂) = ∂
[
Ln(β̂) + λ2nβ

�
AD�

ADAβA
]

∂βj
.

For the oracle estimator β̂ and sj(β̂), with probability approaching 1, we have

sj(β̂) = 0, |β̂j| ≥ (a + 1
2
)λ1n, j ∈ A,∣∣sj(β̂)

∣∣ ≤ λ1n, |β̂j| = 0, j ∈ Ac.

Proof: The objective function Ln(β) + λ2nβ
�D�

ADAβ is convex derivative function. By the convex
optimization theorem, we have sj(β̂) = 0, j ∈ A.

Note that minj∈A |β̂j| ≥ minj∈A |β∗
j | − maxj∈A |β̂j − β∗

j |. Furthermore, we have minj∈A |β∗
j | ≥

M6n−(1−c3)/2 byCondition 5, andmaxj∈A |β̂j −β∗
j | ≤ ‖β̂A − β∗

A‖ =Op(
√
qn/n) =Op(n−(1−c1)/2)

= op(n−(1−c3)/2). Then according to λ1n = o(n−(1−c3)/2), we have

Pr
{
|β̂j| ≥

(
a + 1

2

)
λ1n

}
→ 1, for j ∈ A.

For j ∈ Ac, we have

sj(β̂) = 1
n

n∑
i=1

yixij�′(yix�
iAβ̂A) + 2λ2n

pn∑
i=1

(D�D)ijβ̂i (A.3)
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We observe that

Pr
{
max
j∈Ac

∣∣n−1
n∑

i=1
yixij�′(yix�

iAβ̂A)
∣∣ > λ1n

}

≤ Pr
{
max
j∈Ac

∣∣n−1
n∑

i=1
yixij�′(yix�

iAβ∗
A)
∣∣ >

λ1n

2

}

+ Pr
{
max
j∈Ac

∣∣n−1
n∑

i=1
yixij[�′(yix�

iAβ̂A) − �′(yix�
iAβ∗

A)]
∣∣ >

λ1n

2

}
. (A.4)

By Lemma A.2, the first term of inequality (A.4) is op(1). From Lemma A.1, the second term of
inequality (A.4) is bounded by

Pr
{
max
j∈Ac

∣∣∣n−1
n∑

i=1
yixij

[
�′(yix�

iAβ̂A) − �′(yix�
iAβ∗

A)
]∣∣∣ >

λ1n

2

}

≤ Pr

⎧⎪⎪⎨
⎪⎪⎩max

j∈Ac
sup∥∥∥βA−β∗
A

∥∥∥≤C
√

qn/n

∣∣∣n−1
n∑

i=1
yixij

[
�′(yix�

iAβ̂A) − �′(yix�
iAβ∗

A)
]∣∣∣ >

λ1n

2

⎫⎪⎪⎬
⎪⎪⎭ (A.5)

Together with Conditions 1 and 4, we have

max
j∈Ac

sup
‖βA−β∗

A‖≤C
√

qn/n

∣∣∣n−1
n∑

i=1
yixij

[
�′(yix�

iAβA) − �′(yix�
iAβ∗

A)
]∣∣∣

≤ M2 sup
‖βA−β∗

A‖≤C
√

qn/n
max
i,j

|xij|n−1
n∑

i=1

√
(βA − β∗

A)
�xiAx�

iA(βA − β∗
A)

≤ M2 sup
‖βA−β∗

A‖≤C
√

qn/n
max
i,j

|xij|
√

(βA − β∗
A)

�
(n−1x�

AxA)(βA − β∗
A)

≤ M2 sup
‖βA−β∗

A‖≤C
√

qn/n
max
i,j

|xij| · ‖βA − β∗
A‖ ·

[√
λmax(n−1x�

AxA)
]

= O
{√

log(pnn)
} ·√qn/n = o(λ1n), (A.6)

as n → ∞ by the fact that qnn−1/2 log pn log n = o(λ1n).
By (A.4)–(A.6), as n → ∞, we have

Pr
{
max
j∈Ac

∣∣n−1
n∑

i=1
yixij�′(yix�

iAβ̂A)
∣∣ > λ1n

}
→ 0. (A.7)

Then according to the nature of the matrix D�D,

2λ2n
∣∣∣ pn∑
i=1

(D�D)ijβ̂i

∣∣∣ ≤ 2λ2n
∣∣∣ pn∑
i=1

(D�D)ij(β̂i − β∗
i )

∣∣∣+ 2λ2n
∣∣∣ pn∑
i=1

(D�D)ijβ
∗
i

∣∣∣
≤ 2

√
70λ2n‖β̂A − β∗

A‖ + 2
√
6λ2n‖Dβ∗‖ = op(λ1n). (A.8)

By (A.3), (A.7) and (A.8), we have |sj(β̂)| ≤ λ1n for j ∈ Ac.
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As the oracle estimate β̂ is defined as

β̂ = arg min
βAc=0

{
1
n

n∑
i=1

�(yix�
iAβA) + λ2nβ

�
AD�

ADAβA

}
,

|β̂j| = 0 for j ∈ Ac naturally. �

Appendix 3. Proof of Theorem 2.1.

Proof: Let

Qn(β) = Ln(β) +
p∑

j=1
pλ1n(|βj|) + λ2nβ

�D�Dβ
�= g(β) − h(β),

where

g(β) = Ln(β) + λ1n

p∑
j=1

|βj| + λ2nβ
�D�Dβ , h(β) = λ1n

p∑
j=1

|βj| −
p∑

j=1
pλ1n(|βj|).

By writing as g(β) − h(β), we need to show that β̂ is a local minimizer of Qn(β). Based on
Lemma A3, the proof is similar to that of Theorem 3.2 in [27]. We omit the proof here. �
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