05
2018
03

【课程】Data Mining and Machine Learning(本科)

Course description:This course provides an accessible overview of the field of data mining and statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This course presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this course is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

 

Prerequisites: Probability and Mathematical Statistics, R programming skill

Reference Book:

James G, Witten D, Hastie T, et al. An introduction to statistical learning. New York: springer, 2013.

Hastie, Tibshirani, and Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer. 

方匡南 兰伟. 数据挖掘与机器学习.  高等教育出版社.2024. 2

方匡南. 数据科学. 电子工业出版社. 2018

 

Contents:

1.          Introduction ch1 Introduction1.pdf  ch1 introduction2.pdf

2.     Statistical Learning. ch2 statistical_learning.pdf

3.          Linear Regression  ch3 linear regression.pdf

4.          Classification  ch4 linear classification.pdf

5.          Resampling Methods  

6.          Linear Model Selection and Regularization   ch6 model_selection.pdf

7.          Moving Beyond Linearity ch7 nonlinearity .pdf

8.          Tree-Based Methods  ch8 trees.pdf

9.          Support Vector Machines   ch9 SVM .pdf

10.       Unsupervised Learning   ch10 unsupervised.pdf

11. Deep Learning Ch11_Deep_Learning.pdf


 Data: data.zip


案例:

人力资源分析——员工离职意愿预测  人力资源分析——员工离职意愿预测.zip



延伸阅读文献:

Multiple test:Testing covariates in high dimension liner regression with common factors.pdf

Two-part model: identification of porportionality structure with two-part model.pdf

SCAD: scad runze li.pdf

elastic-net: zou-elastic net.pdf

lasso: Regression-Shrinkage-and-Selection-via-the-Lasso.pdf

adaptive lasso: adaptive lasso.pdf

group lasso:group lasso.pdf

structured sparse logistic regression: Structured sparse logistic regression with application to lung cancer prediction using breath volatile biomarkers.pdf

integrative sparse PCA: iSPCA.pdf

Nonparametric Beta Regression:NonparametricAdditiveBetaRegre.pdf

Structured sparse SVM: Structured sparse SVM with ordered features.pdf.zip

Functional Biclustering:Biclustering Analysis of Functionals using Penalization Fusion.pdf

Clustered Distributed learning: Heterogeneity-aware Clustered Distributed Learning for Multi-source Data Analysis.pdf


Quiz :  发到邮箱datamining_under@163.com,  邮件标题:quiz/Homwork#+姓名+学号


 

« 上一篇 下一篇 »